Strong Instability of Ground States to a Fourth Order Schrodinger Equation

被引:28
作者
Bonheure, Denis [1 ,2 ]
Casteras, Jean-Baptiste [1 ,2 ]
Gou, Tianxiang [3 ,4 ]
Jeanjean, Louis [3 ]
机构
[1] Univ Libre Bruxelles, Dept Math, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[2] Equipe Mephysto, Inria Lille Nord Europe, Parc Sci Haute Borne, Pk Plaza,Batiment A 40 Ave Halley, F-59650 Villeneuve Dascq, France
[3] Univ Bourgogne Franche Comte, UMR 6623, Lab Math, 16 Route Gray, F-25030 Besancon, France
[4] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
NONLINEAR SCHRODINGER; SINGULAR SOLUTIONS; STABILITY;
D O I
10.1093/imrn/rnx273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove the instability by blow-up of the ground state solutions for a class of fourth order Schrodinger equations. This extends the first rigorous results on blowing-up solutions for the biharmonic nonlinear Schrodinger due to Boulenger and Lenzmann [8] and confirm numerical conjectures from [1-3, 11].
引用
收藏
页码:5299 / 5315
页数:17
相关论文
共 17 条
[1]   Singular solutions of the L2-supercritical biharmonic nonlinear Schrodinger equation [J].
Baruch, G. ;
Fibich, G. .
NONLINEARITY, 2011, 24 (06) :1843-1859
[2]   SINGULAR SOLUTIONS OF THE BIHARMONIC NONLINEAR SCHRODINGER EQUATION [J].
Baruch, G. ;
Fibich, G. ;
Mandelbaum, E. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (08) :3319-3341
[3]   Ring-type singular solutions of the biharmonic nonlinear Schrodinger equation [J].
Baruch, G. ;
Fibich, G. ;
Mandelbaum, E. .
NONLINEARITY, 2010, 23 (11) :2867-2887
[4]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[7]   Waveguide solutions for a nonlinear Schrodinger equation with mixed dispersion [J].
Bonheure, Denis ;
Nascimento, Robson .
CONTRIBUTIONS TO NONLINEAR ELLIPTIC EQUATIONS AND SYSTEMS, 2015, 86 :31-53
[8]   BLOWUP FOR BIHARMONIC NLS [J].
Boulenger, Thomas ;
Lenzmann, Enno .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2017, 50 (03) :503-544
[9]   Stability and instability results for standing waves of quasi-linear Schrodinger equations [J].
Colin, Mathieu ;
Jeanjean, Louis ;
Squassina, Marco .
NONLINEARITY, 2010, 23 (06) :1353-1385
[10]   Self-focusing with fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1437-1462