A New Triangular Spectral Element Method II: Mixed Formulation and hp-Error Estimates

被引:3
作者
Zhou, Bingzhen [1 ]
Wang, Bo [1 ]
Wang, Li-Lian [2 ]
Xie, Ziqing [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
关键词
Triangular spectral element method; hp error analysis; mixed form; interpolation error in H-1-norm; POLYNOMIAL INTERPOLATION; POINTS;
D O I
10.4208/nmtma.OA-2018-0038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Mixed triangular spectral element method using nodal basis on unstructured meshes is investigated in this paper. The method is based on equivalent first order system of the elliptic problem and rectangle-triangle transforms. It fully enjoys the tensorial structure and flexibility in handling complex domains by using nodal basis and unstructured triangular mesh. Different from the usual Galerkin formulation, the mixed form is particularly advantageous in this context, since it can avoid the singularity induced by the rectangle-triangle transform in the calculation of the matrices, and does not require the evaluation of the stiffness matrix. An hp a priori error estimate is presented for the proposed method. The implementation details and some numerical examples are provided to validate the accuracy and flexibility of the method.
引用
收藏
页码:72 / 97
页数:26
相关论文
共 28 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]  
[Anonymous], 2011, Spectral Methods, DOI [DOI 10.1007/978, DOI 10.1007/978-3-540-71041-7, 10.1007/978-3-540-71041-7]
[3]  
Bernardi C., 2005, GAMM-Mitteilungen, V28, P97, DOI [10.1002/gamm.201490020, DOI 10.1002/GAMM.201490020]
[4]   Approximation on simplices with respect to weighted Sobolev norms [J].
Braess, D ;
Schwab, C .
JOURNAL OF APPROXIMATION THEORY, 2000, 103 (02) :329-337
[5]  
CANUTO C., 2006, SPECTRAL METHODS EVO
[6]   A Unstructured Nodal Spectral-Element Method for the Navier-Stokes Equations [J].
Chen, Lizhen ;
Shen, Jie ;
Xu, Chuanju .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 12 (01) :315-336
[7]   Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle [J].
Chen, Q ;
Babuska, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 128 (3-4) :405-417
[8]  
Ciarlet PG., 1987, FINITE ELEMENT METHO
[9]  
Deville M. O., 2002, Cambridge Monographs on Applied and Computational Mathematics, DOI DOI 10.1017/CBO9780511546792
[10]  
Dubiner M., 1991, Journal of Scientific Computing, V6, P345, DOI 10.1007/BF01060030