Cost-effective synthesis and superior electrochemical performance of sodium vanadium fluorophosphate nanoparticles encapsulated in conductive graphene network as high-voltage cathode for sodium-ion batteries

被引:47
作者
Liu, Kelu [1 ]
Lei, Ping [1 ]
Wan, Xin [1 ]
Zheng, Wenting [1 ]
Xiang, Xingde [1 ]
机构
[1] Northeast Forestry Univ, Dept Chem & Chem Engn, Coll Sci, Harbin 150040, Heilongjiang, Peoples R China
关键词
Sodium-ion batteries; Cathode material; Sodium vanadium fluorophosphate; Synthesis; Electrochemical performance; NA-STORAGE PERFORMANCE; HIGH-RATE CAPABILITY; ANODE MATERIAL; POROUS GRAPHENE; CARBON; MICROSPHERES; STABILITY; EVOLUTION; IMPACT;
D O I
10.1016/j.jcis.2018.07.114
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium vanadium fluorophosphate (Na-3(VO)(2)(PO4)(2)F, denoted as NVPF) has attracted particular interests as cathode for high-energy sodium-ion batteries (SIBs) owing to the high working potential, high specific capacity, and robust structural framework. However, it is challenged by the low electron conductivity and lack of available facile synthesis method. Herein, an environmentally benign, cost-effective synthesis route is reported to produce NVPF nanoparticles encapsulated in conductive graphene network (NVPF/C), involving low-temperature synthesis of NVPF nanoparticles in absolute aqueous solvents and subsequent construction of conductive network through thermally induced transformation of graphene-oxide nanosheets. The resultant product is structurally and electrochemically investigated by combining X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscope, transition electron microscope, and electrochemical analysis. Experimental results show that the optimized NVPF/C product possesses a three-dimensional graphene-encapsulation nanostructure composed of similar to 400 nm NVPF nanoparticles and similar to 4 nm carbon-coating layer. The unique hierarchical structure enables it cycling with excellent electrochemical performance in terms of a high reversible capacity (116.4 mA h g(-1) at 0.2 C), excellent high-rate capability (87.4 mA h g(-1) at 10 C) and long-term lifetime (82.1% capacity retention after 1200 cycles). It is indicated that the facile synthesis route can achieve high-performance NVPF/C material for SIBs. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:426 / 432
页数:7
相关论文
共 55 条
[1]   Comprehensive Investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction [J].
Bianchini, M. ;
Fauth, F. ;
Brisset, N. ;
Weill, F. ;
Suard, E. ;
Masquelier, C. ;
Croguennec, L. .
CHEMISTRY OF MATERIALS, 2015, 27 (08) :3009-3020
[2]   VIV Disproportionation Upon Sodium Extraction From Na3V2(PO4)2F3 Observed by Operando X-ray Absorption Spectroscopy and Solid-State NMR [J].
Broux, Thibault ;
Bamine, Tahya ;
Simonelli, Laura ;
Stievano, Lorenzo ;
Fauth, Francois ;
Menetrier, Michel ;
Carlier, Dany ;
Masquelier, Christian ;
Croguennec, Laurence .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (08) :4103-4111
[3]   Strong Impact of the Oxygen Content in Na3V2(PO4)2F3-yOy (0 ≤ y ≤ 0.5) on Its Structural and Electrochemical Properties [J].
Broux, Thibault ;
Bamine, Tahya ;
Fauth, Francois ;
Simonelli, Laura ;
Olszewski, Woriech ;
Marini, Carlo ;
Menetrier, Michel ;
Carlier, Dany ;
Masquelier, Christian ;
Croguennec, Laurence .
CHEMISTRY OF MATERIALS, 2016, 28 (21) :7683-7692
[4]   Graphene quantum dots-shielded Na-3(VO)(2)(PO4)(2)F@C nanocuboids as robust cathode for Na-ion battery [J].
Deng, Gang ;
Chao, Dongliang ;
Guo, Yuwei ;
Chen, Zhen ;
Wang, Huanhuan ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Shen, Ze Xiang .
ENERGY STORAGE MATERIALS, 2016, 5 :198-204
[5]   Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for SodiumIon Batteries [J].
Dou, Xinwei ;
Hasa, Ivana ;
Hekmatfar, Maral ;
Diemant, Thomas ;
Behm, R. Juergen ;
Buchholz, Daniel ;
Passerini, Stefano .
CHEMSUSCHEM, 2017, 10 (12) :2668-2676
[6]   Facile synthesis of ammonium vanadium oxide nanorods for Na-ion battery cathodes [J].
Fei, Hailong ;
Liu, Xin ;
Lin, Yunsheng ;
Wei, Mingdeng .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 428 :73-77
[7]   Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property [J].
Ge, Peng ;
Zhang, Chenyang ;
Hou, Hongshuai ;
Wu, Buke ;
Zhou, Liang ;
Li, Sijie ;
Wu, Tianjing ;
Hu, Jiugang ;
Mai, Liqiang ;
Ji, Xiaobo .
NANO ENERGY, 2018, 48 :617-629
[8]   Cubic KTi2(PO4)3 as electrode materials for sodium-ion batteries [J].
Han, Jin ;
Xu, Maowen ;
Niu, Yubin ;
Jia, Min ;
Liu, Ting ;
Li, Chang Ming .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2016, 483 :67-72
[9]   Biologically inspired pteridine redox centres for rechargeable batteries [J].
Hong, Jihyun ;
Lee, Minah ;
Lee, Byungju ;
Seo, Dong-Hwa ;
Park, Chan Beum ;
Kang, Kisuk .
NATURE COMMUNICATIONS, 2014, 5
[10]   Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries [J].
Jin, Hongyun ;
Dong, Jie ;
Uchaker, Evan ;
Zhang, Qifeng ;
Zhou, Xuezhe ;
Hou, Shuen ;
Li, Jiangyu ;
Cao, Guozhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (34) :17563-17568