Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery

被引:142
作者
Jaroentomeechai, Thapakorn [1 ]
Stark, Jessica C. [2 ,3 ,4 ]
Natarajan, Aravind [5 ]
Glasscock, Cameron J. [1 ]
Yates, Laura E. [1 ]
Hsu, Karen J. [6 ]
Mrksich, Milan [4 ,7 ,8 ,9 ]
Jewett, Michael C. [2 ,3 ,4 ]
DeLisa, Matthew P. [1 ,5 ]
机构
[1] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[2] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[3] Chem Life Proc Inst, 2170 Campus Dr, Evanston, IL 60208 USA
[4] Northwestern Univ, Ctr Synthet Biol, 2145 Sheridan Rd, Evanston, IL 60208 USA
[5] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA
[6] Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd Technol Inst B224, Evanston, IL 60208 USA
[7] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[8] Northwestern Univ, Dept Cell & Mol Biol, Chicago, IL 60611 USA
[9] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
LINKED PROTEIN GLYCOSYLATION; SITE-SPECIFIC INCORPORATION; N-GLYCOSYLATION; AMINO-ACID; GLYCANS; OLIGOSACCHARYLTRANSFERASE; ENVIRONMENT; PATHWAY;
D O I
10.1038/s41467-018-05110-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The emerging discipline of bacterial glycoengineering has made it possible to produce designer glycans and glycoconjugates for use as vaccines and therapeutics. Unfortunately, cell-based production of homogeneous glycoproteins remains a significant challenge due to cell viability constraints and the inability to control glycosylation components at precise ratios in vivo. To address these challenges, we describe a novel cell-free glycoprotein synthesis (CFGpS) technology that seamlessly integrates protein biosynthesis with asparagine-linked protein glycosylation. This technology leverages a glyco-optimized Escherichia coli strain to source cell extracts that are selectively enriched with glycosylation components, including oligosaccharyltransferases (OSTs) and lipid-linked oligosaccharides (LLOs). The resulting extracts enable a one-pot reaction scheme for efficient and site-specific glycosylation of target proteins. The CFGpS platform is highly modular, allowing the use of multiple distinct OSTs and structurally diverse LLOs. As such, we anticipate CFGpS will facilitate fundamental understanding in glycoscience and make possible applications in on demand biomanufacturing of glycoproteins.
引用
收藏
页数:11
相关论文
共 68 条
[41]   Rapid acquisition and model-based analysis of cell-free transcription-translation reactions from nonmodel bacteria [J].
Moore, Simon J. ;
MacDonald, James T. ;
Wienecke, Sarah ;
Ishwarbhai, Alka ;
Tsipa, Argyro ;
Aw, Rochelle ;
Kylilis, Nicolas ;
Bell, David J. ;
McClymont, David W. ;
Jensen, Kirsten ;
Polizzi, Karen M. ;
Biedendieck, Rebekka ;
Freemont, Paul S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (19) :E4340-E4349
[42]   AN MESSENGER-RNA-DEPENDENT INVITRO TRANSLATION SYSTEM FROM TRYPANOSOMA-BRUCEI [J].
MORENO, SNJ ;
IP, HS ;
CROSS, GAM .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1991, 46 (02) :265-274
[43]   In Vitro Activity of Neisseria meningitidis PglL O-Oligosaccharyltransferase with Diverse Synthetic Lipid Donors and a UDP-activated Sugar [J].
Musumeci, Matias A. ;
Hug, Isabelle ;
Scott, Nichollas E. ;
Ielmini, M. Veronica ;
Foster, Leonard J. ;
Wang, Peng G. ;
Feldman, Mario F. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (15) :10578-10587
[44]   Substitute sweeteners: diverse bacterial oligosaccharyltransferases with unique N-glycosylation site preferences [J].
Ollis, Anne A. ;
Chai, Yi ;
Natarajan, Aravind ;
Perregaux, Emily ;
Jaroentomeechai, Thapakorn ;
Guarino, Cassandra ;
Smith, Jessica ;
Zhang, Sheng ;
DeLisa, Matthew P. .
SCIENTIFIC REPORTS, 2015, 5
[45]   Robust production of recombinant phosphoproteins using cell-free protein synthesis [J].
Oza, Javin P. ;
Aerni, Hans R. ;
Pirman, Natasha L. ;
Barber, Karl W. ;
ter Haar, Charlotte M. ;
Rogulina, Svetlana ;
Amrofell, Matthew B. ;
Isaacs, Farren J. ;
Rinehart, Jesse ;
Jewett, Michael C. .
NATURE COMMUNICATIONS, 2015, 6
[46]   Portable, On-Demand Biomolecular Manufacturing [J].
Pardee, Keith ;
Slomovic, Shimyn ;
Nguyen, Peter Q. ;
Lee, Jeong Wook ;
Donghia, Nina ;
Burrill, Devin ;
Ferrante, Tom ;
McSorley, Fern R. ;
Furuta, Yoshikazu ;
Vernet, Andyna ;
Lewandowski, Michael ;
Boddy, Christopher N. ;
Joshi, Neel S. ;
Collins, James J. .
CELL, 2016, 167 (01) :248-+
[47]   Paper-Based Synthetic Gene Networks [J].
Pardee, Keith ;
Green, Alexander A. ;
Ferrante, Tom ;
Cameron, D. Ewen ;
DaleyKeyser, Ajay ;
Yin, Peng ;
Collins, James J. .
CELL, 2014, 159 (04) :940-954
[48]   UCSF chimera - A visualization system for exploratory research and analysis [J].
Pettersen, EF ;
Goddard, TD ;
Huang, CC ;
Couch, GS ;
Greenblatt, DM ;
Meng, EC ;
Ferrin, TE .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (13) :1605-1612
[49]   Glycomics: an integrated systems approach to structure-function relationships of glycans [J].
Raman, R ;
Raguram, S ;
Venkataraman, G ;
Paulson, JC ;
Sasisekharan, R .
NATURE METHODS, 2005, 2 (11) :817-824
[50]   Characterization of the single-subunit oligosaccharyltransferase STT3A from Trypanosoma brucei using synthetic peptides and lipid-linked oligosaccharide analogs [J].
Ramirez, Ana S. ;
Boilevin, Jeremy ;
Biswas, Rasomoy ;
Gan, Bee Ha ;
Janser, Daniel ;
Aebi, Markus ;
Darbre, Tamis ;
Reymond, Jean-Louis ;
Locher, Kaspar P. .
GLYCOBIOLOGY, 2017, 27 (06) :525-535