A unified empirical modeling approach for particulate matter and NO2 in a coastal city in China

被引:8
作者
Xu, Jia [1 ]
Yang, Zhenchun [3 ]
Han, Bin [1 ]
Yang, Wen [1 ]
Duan, Yusen [2 ]
Fu, Qingyan [2 ]
Bai, Zhipeng [1 ]
机构
[1] Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China
[2] Shanghai Environm Monitoring Ctr, Shanghai, Peoples R China
[3] Duke Univ, Duke Global Hlth Inst, Durham, NC 27708 USA
关键词
PM2.5; NO2; Spatiotemporal model; GAAP; Shanghai; LAND-USE REGRESSION; RESOLUTION PM2.5 CONCENTRATIONS; AEROSOL OPTICAL DEPTH; YANGTZE-RIVER DELTA; AIR-POLLUTION; SPATIAL VARIATION; SATELLITE DATA; SHANGHAI; EXPOSURE; AREAS;
D O I
10.1016/j.chemosphere.2022.134384
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Modeling air pollutants on a fine spatiotemporal scale is necessary for health studies that focus on critical short-term exposure windows. A unified empirical modeling approach is useful for health studies; however, it is unclear whether this approach can be used in a coastal city for air pollutants driven by local emissions and regional meteorological factors. An advanced empirical modeling approach was used to develop exposure models from October 2012 to December 2019, for particulate matter with aerodynamic diameters less than or equal to 2.5 and 10 mu m (PM2.5 and PM10) and nitrogen dioxide (NO2) in the coastal city of Shanghai, China. Air pollutant concentrations were obtained from daily measurements at 55 administrative monitoring sites that were integrated into three-day average concentrations. Data on a large array of geographic variables were collected, and their dimensions were reduced using the partial least squares regression method. A geostatistical model using the land use regression approach in a universal kriging framework was developed to estimate short-term exposure concentrations. The prediction ability of the models were determined by leave-one (site)-out cross-validation (LOOCV) and external validation (EV). Compared to the LOOCV results, the EV results for PM2.5 and PM10 were consistently reliable, but the EV for NO2 had a larger root mean squared error. The temporal random effects involved in the model structure were interpreted using sensitivity analyses. This affected the short-term PM2.5 and PM10 model predictions. This unified empirical modeling approach was successfully used for particulate matter in Shanghai, where air pollution is affected by complex regional and meteorological conditions. These exposure models are going to be applied for making exposure predictions at residential locations for short-term exposure predictions in the Growth trajectories and air pollution (GAAP) study in Shanghai that focuses on maternal and early life exposure to air pollutants.
引用
收藏
页数:9
相关论文
共 52 条
[1]   Agreement Between Exhaled Breath Carbon Monoxide Threshold Levels and Self-Reported Cigarette Smoking in a Sample of Male Adolescents in Jordan [J].
Al-Sheyab, Nihaya ;
Kheirallah, Khalid A. ;
Mangnall, Linda J. Thomson ;
Gallagher, Robyn .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2015, 12 (01) :841-854
[2]   Early life exposure to air pollution: How bad is it? [J].
Backes, Carl H. ;
Nelin, Timothy ;
Gorr, Matthew W. ;
Wold, Loren E. .
TOXICOLOGY LETTERS, 2013, 216 (01) :47-53
[3]   Effect of the number of measurement sites on land use regression models in estimating local air pollution [J].
Basagana, Xavier ;
Rivera, Marcela ;
Aguilera, Inmaculada ;
Agis, David ;
Bouso, Laura ;
Elosua, Roberto ;
Foraster, Maria ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Vila, Joan ;
Kuenzli, Nino .
ATMOSPHERIC ENVIRONMENT, 2012, 54 :634-642
[4]   A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States [J].
Beckerman, Bernardo S. ;
Jerrett, Michael ;
Serre, Marc ;
Martin, Randall V. ;
Lee, Seung-Jae ;
van Donkelaar, Aaron ;
Ross, Zev ;
Su, Jason ;
Burnett, Richard T. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (13) :7233-7241
[5]   Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project [J].
Beelen, Rob ;
Hoek, Gerard ;
Vienneau, Danielle ;
Eeftens, Marloes ;
Dimakopoulou, Konstantina ;
Pedeli, Xanthi ;
Tsai, Ming-Yi ;
Kunzli, Nino ;
Schikowski, Tamara ;
Marcon, Alessandro ;
Eriksen, Kirsten T. ;
Raaschou-Nielsen, Ole ;
Stephanou, Euripides ;
Patelarou, Evridiki ;
Lanki, Timo ;
Yli-Tuomi, Tarja ;
Declercq, Christophe ;
Falq, Gregoire ;
Stempfelet, Morgane ;
Birk, Matthias ;
Cyrys, Josef ;
von Klot, Stephanie ;
Nador, Gizella ;
Varro, Mihaly Janos ;
Dedele, Audrius ;
Grazuleviciene, Regina ;
Moelter, Anna ;
Lindley, Sarah ;
Madsen, Christian ;
Cesaroni, Giulia ;
Ranzi, Andrea ;
Badaloni, Chiara ;
Hoffmann, Barbara ;
Nonnemacher, Michael ;
Kraemer, Ursula ;
Kuhlbusch, Thomas ;
Cirach, Marta ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Bellander, Tom ;
Korek, Michal ;
Olsson, David ;
Stromgren, Magnus ;
Dons, Evi ;
Jerrett, Michael ;
Fischer, Paul ;
Wang, Meng ;
Brunekreef, Bert ;
de Hoogh, Kees .
ATMOSPHERIC ENVIRONMENT, 2013, 72 :10-23
[6]   A cohort study of traffic-related air pollution impacts on birth outcomes [J].
Brauer, Michael ;
Lencar, Cornel ;
Tamburic, Lillian ;
Koehoorn, Mieke ;
Demers, Paul ;
Karr, Catherine .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2008, 116 (05) :680-686
[7]   A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide [J].
Chen, Jie ;
de Hoogh, Kees ;
Gulliver, John ;
Hoffmann, Barbara ;
Hertel, Ole ;
Ketzel, Matthias ;
Bauwelinck, Mariska ;
van Donkelaar, Aaron ;
Hvidtfeldt, Ulla A. ;
Katsouyanni, Klea ;
Janssen, Nicole A. H. ;
Martin, Randall V. ;
Samoli, Evangelia ;
Schwartz, Per E. ;
Stafoggia, Massimo ;
Bellander, Tom ;
Strak, Maciek ;
Wolf, Kathrin ;
Vienneau, Danielle ;
Vermeulen, Roel ;
Brunekreef, Bert ;
Hoek, Gerard .
ENVIRONMENT INTERNATIONAL, 2019, 130
[8]   Spatiotemporal modeling of PM2.5 concentrations at the national scale combining land use regression and Bayesian maximum entropy in China [J].
Chen, Li ;
Gao, Shuang ;
Zhang, Hui ;
Sun, Yanling ;
Ma, Zhenxing ;
Vedal, Sverre ;
Mao, Jian ;
Bai, Zhipeng .
ENVIRONMENT INTERNATIONAL, 2018, 116 :300-307
[9]   Effect of Early Life Exposure to Air Pollution on Development of Childhood Asthma [J].
Clark, Nina Annika ;
Demers, Paul A. ;
Karr, Catherine J. ;
Koehoorn, Mieke ;
Lencar, Cornel ;
Tamburic, Lillian ;
Brauer, Michael .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2010, 118 (02) :284-290
[10]   An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution [J].
Di, Qian ;
Amini, Heresh ;
Shi, Liuhua ;
Kloog, Itai ;
Silvern, Rachel ;
Kelly, James ;
Sabath, M. Benjamin ;
Choirat, Christine ;
Koutrakis, Petros ;
Lyapustin, Alexei ;
Wang, Yujie ;
Mickley, Loretta J. ;
Schwartz, Joel .
ENVIRONMENT INTERNATIONAL, 2019, 130