Progress with Uncertainty Quantification in Generic Monte Carlo Simulations

被引:0
作者
Saracco, P.
Pia, M. G.
机构
来源
2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC) | 2013年
关键词
POPULATION; SAMPLES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the context of Monte Carlo (MC) simulation of particle transport the goal of Uncertainty Quantification (UQ) is to become able to predict how non statistical errors affect the physical outcomes: these errors derive mainly from uncertainties in the physics data and/or in the model they embed, but also from uncertainties in the description of the experimental configuration under examination. In the case of a single uncertainty a simple analytical relation exists among its the Probability Density Function (PDF) and the corresponding PDF for the output of the simulation: then a complete statistical analysis of the results of the simulation is always possible. The extension of this result to the multi-variate case is examined, when more than one of the physical input parameters are affected by uncertainties: a generalized analytical relation exists among input and output PDFs, but some more sophisticated mathematical tools are needed to handle such expression.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Monte Carlo based calibration of an air monitoring system for gamma and beta plus radiation [J].
Sarnelli, A. ;
Negrini, M. ;
D'Errico, V. ;
Bianchini, D. ;
Strigari, L. ;
Mezzenga, E. ;
Menghi, E. ;
Marcocci, F. ;
Benassi, M. .
APPLIED RADIATION AND ISOTOPES, 2015, 105 :273-277
[42]   Objective characterization of bruise evolution using photothermal depth profiling and Monte Carlo modeling [J].
Vidovic, Luka ;
Milanic, Matija ;
Majaron, Boris .
JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (01)
[43]   Conjuring the Ghosts of Missing Children: A Monte Carlo Simulation of Reproductive Restraint in Tokugawa Japan [J].
Drixler, Fabian F. .
DEMOGRAPHY, 2015, 52 (02) :667-703
[44]   ESTIMATION OF BOURGOYNE AND YOUNG MODEL COEFFICIENTS USING MARKOV CHAIN MONTE CARLO SIMULATION [J].
Formighieri, Sanjay ;
de Freitas Filho, Paulo Jose .
2015 WINTER SIMULATION CONFERENCE (WSC), 2015, :1172-1183
[45]   Monte Carlo simulation of x-ray scattering for quantitative characterization of breast cancer [J].
Elshemey, Wael M. ;
Elsharkawy, Wafaa B. .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (12) :3773-3784
[46]   Convergence acceleration of Monte Carlo many-body perturbation methods by direct sampling [J].
Doran, Alexander E. ;
Hirata, So .
JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (10)
[47]   Numerical investigation of measurement error of the integrating sphere based on the Monte-Carlo method [J].
Liu, Bin ;
Yuan, Yuan ;
Yu, Zhao-Yang ;
Huang, Xing ;
Tan, He-Ping .
INFRARED PHYSICS & TECHNOLOGY, 2016, 79 :121-127
[48]   Uncertainty quantification for hybrid random logistic models with harvesting via density functions [J].
Cortes, J-C ;
Moscardo-Garcia, A. ;
Villanueva, R-J .
CHAOS SOLITONS & FRACTALS, 2022, 155
[49]   Insights into the quantification and reporting of model-related uncertainty across different disciplines [J].
Simmonds, Emily G. ;
Adjei, Kwaku Peprah ;
Andersen, Christoffer Wold ;
Aspheim, Janne Cathrin Hetle ;
Battistin, Claudia ;
Bulso, Nicola ;
Christensen, Hannah M. ;
Cretois, Benjamin ;
Cubero, Ryan ;
Davidovich, Ivan A. ;
Dickel, Lisa ;
Dunn, Benjamin ;
Dunn-Sigouin, Etienne ;
Dyrstad, Karin ;
Einum, Sigurd ;
Giglio, Donata ;
Gjerlow, Haakon ;
Godefroidt, Amelie ;
Gonzalez-Gil, Ricardo ;
Cogno, Soledad Gonzalo ;
Grosse, Fabian ;
Halloran, Paul ;
Jensen, Mari F. ;
Kennedy, John James ;
Langsaether, Peter Egge ;
Laverick, Jack H. ;
Lederberger, Debora ;
Li, Camille ;
Mandeville, Elizabeth G. ;
Mandeville, Caitlin ;
Moe, Espen ;
Schroeder, Tobias Navarro ;
Nunan, David ;
Sicacha-Parada, Jorge ;
Simpson, Melanie Rae ;
Skarstein, Emma Sofie ;
Spensberger, Clemens ;
Stevens, Richard ;
Subramanian, Aneesh C. ;
Svendsen, Lea ;
Theisen, Ole Magnus ;
Watret, Connor ;
O'Hara, Robert B. .
ISCIENCE, 2022, 25 (12)
[50]   MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 x 3 Inch NaI(Tl) Detector and Comparison with XCOM and Monte Carlo Data [J].
Tekin, Huseyin Ozan .
SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS, 2016, 2016