Progress with Uncertainty Quantification in Generic Monte Carlo Simulations

被引:0
|
作者
Saracco, P.
Pia, M. G.
机构
来源
2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC) | 2013年
关键词
POPULATION; SAMPLES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the context of Monte Carlo (MC) simulation of particle transport the goal of Uncertainty Quantification (UQ) is to become able to predict how non statistical errors affect the physical outcomes: these errors derive mainly from uncertainties in the physics data and/or in the model they embed, but also from uncertainties in the description of the experimental configuration under examination. In the case of a single uncertainty a simple analytical relation exists among its the Probability Density Function (PDF) and the corresponding PDF for the output of the simulation: then a complete statistical analysis of the results of the simulation is always possible. The extension of this result to the multi-variate case is examined, when more than one of the physical input parameters are affected by uncertainties: a generalized analytical relation exists among input and output PDFs, but some more sophisticated mathematical tools are needed to handle such expression.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Uncertainty Quantification in Helicopter Performance Using Monte Carlo Simulations
    Siva, C.
    Murugan, M. S.
    Ganguli, Ranjan
    JOURNAL OF AIRCRAFT, 2011, 48 (05): : 1503 - 1511
  • [2] A Generic Surface Sampler for Monte Carlo Simulations
    Detwiler, J. A.
    Henning, R.
    Johnson, R. A.
    Marino, M. G.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2008, 55 (04) : 2329 - 2333
  • [3] Progress and Outlook in Monte Carlo Simulations
    Theodorou, Doros N.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (07) : 3047 - 3058
  • [4] Uncertainty Quantification (UQ) in generic MonteCarlo simulations
    Saracco, P.
    Batie, M.
    Hoff, G.
    Pia, M. G.
    2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, : 651 - 656
  • [5] Uncertainty Quantification of Vacuum Plume Simulations Using Direct Simulation Monte Carlo Method
    Chen H.
    Lin Z.
    Liu C.-C.
    Zhang B.
    Liu H.
    Tuijin Jishu/Journal of Propulsion Technology, 2020, 41 (01): : 73 - 84
  • [6] Multilevel Monte Carlo FDTD Method for Uncertainty Quantification
    Zhu, Xiaojie
    Di Rienzo, Luca
    Ma, Xikui
    Codecasa, Lorenzo
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (10): : 2030 - 2034
  • [7] Multicanonical sequential Monte Carlo sampler for uncertainty quantification
    Millar, Robert
    Li, Hui
    Li, Jinglai
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 237
  • [8] An exact framework for uncertainty quantification in Monte Carlo simulation
    Saracco, P.
    Pia, M. G.
    20TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2013), PARTS 1-6, 2014, 513
  • [9] Monte Carlo simulations of the backscattering measurements for associated uncertainty
    Vadakke-Chanat, Sayoob
    Shanmugam, Palanisamy
    Sundarabalan, Balasubramanian
    OPTICS EXPRESS, 2018, 26 (16): : 21258 - 21270
  • [10] Evaluation of CMM uncertainty through Monte Carlo simulations
    Balsamo, A
    Di Ciommo, M
    Mugno, R
    Rebaglia, BI
    Ricci, E
    Grella, R
    CIRP ANNALS 1999 - MANUFACTURING TECHNOLOGY, 1999, : 425 - 428