Temporal progress of gene expression analysis with RNA-Seq data: A review on the relationship between computational methods

被引:0
作者
Costa-Silva, Juliana [1 ]
Domingues, Douglas S. [2 ]
Menotti, David [1 ]
Hungria, Mariangela [3 ]
Lopes, Fabricio Martins [4 ]
机构
[1] Univ Fed Parana, Dept Informat, Rua Coronel Francisco Herdclito Dos Santos 100, BR-81531990 Curitiba, Parana, Brazil
[2] Univ Sao Paulo, Luiz De Queiroz Coll Agr, Dept Genet, Ave Pddua Dias 11, BR-13418900 Piracicaba, SP, Brazil
[3] Dept Soil Biotecnol Embrapa Soybean, Cx Postal 231, BR-86000970 Londrina, Parana, Brazil
[4] Univ Tecnol Fed Parana UTFPR, Dept Comp Sci, Ave Alberto Carazzai 1640, BR-86300000 Cornelio Procopio, Parana, Brazil
来源
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL | 2023年 / 21卷
基金
巴西圣保罗研究基金会;
关键词
RNA-Seq; Differential expression analysis; Gene expression; Bioinformatics;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Analysis of differential gene expression from RNA-seq data has become a standard for several research areas. The steps for the computational analysis include many data types and file formats, and a wide vari-ety of computational tools that can be applied alone or together as pipelines. This paper presents a review of the differential expression analysis pipeline, addressing its steps and the respective objectives, the principal methods available in each step, and their properties, therefore introducing an organized over-view to this context. This review aims to address mainly the aspects involved in the differentially expressed gene (DEG) analysis from RNA sequencing data (RNA-seq), considering the computational methods. In addition, a timeline of the computational methods for DEG is shown and discussed, and the relationships existing between the most important computational tools are presented by an interac-tion network. A discussion on the challenges and gaps in DEG analysis is also highlighted in this review. This paper will serve as a tutorial for new entrants into the field and help established users update their analysis pipelines.(c) 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:86 / 98
页数:13
相关论文
共 149 条
  • [1] COMPLEMENTARY-DNA SEQUENCING - EXPRESSED SEQUENCE TAGS AND HUMAN GENOME PROJECT
    ADAMS, MD
    KELLEY, JM
    GOCAYNE, JD
    DUBNICK, M
    POLYMEROPOULOS, MH
    XIAO, H
    MERRIL, CR
    WU, A
    OLDE, B
    MORENO, RF
    KERLAVAGE, AR
    MCCOMBIE, WR
    VENTER, JC
    [J]. SCIENCE, 1991, 252 (5013) : 1651 - 1656
  • [2] A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing
    Aevermann, Brian
    Zhang, Yun
    Novotny, Mark
    Keshk, Mohamed
    Bakken, Trygve
    Miller, Jeremy
    Hodge, Rebecca
    Lelieveldt, Boudewijn
    Lein, Ed
    Scheuermann, Richard H.
    [J]. GENOME RESEARCH, 2021, 31 (10) : 1767 - 1780
  • [3] GREIN: An Interactive Web Platform for Re-analyzing GEO RNA-seq Data
    Al Mahi, Naim
    Najafabadi, Mehdi Fazel
    Pilarczyk, Marcin
    Kouril, Michal
    Medvedovic, Mario
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Amitava Dasgupta, 2014, Clinical Chemistry, Immunology and Laboratory Quality Control, P47, DOI DOI 10.1016/B978-0-12-407821-5.00004-8
  • [5] Differential expression analysis for sequence count data
    Anders, Simon
    Huber, Wolfgang
    [J]. GENOME BIOLOGY, 2010, 11 (10):
  • [6] HTSeq-a Python']Python framework to work with high-throughput sequencing data
    Anders, Simon
    Pyl, Paul Theodor
    Huber, Wolfgang
    [J]. BIOINFORMATICS, 2015, 31 (02) : 166 - 169
  • [7] Anders Simon, 2012, NATURE PROC, P1
  • [8] Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach
    Bainbridge, Matthew N.
    Warren, Rene L.
    Hirst, Martin
    Romanuik, Tammy
    Zeng, Thomas
    Go, Anne
    Delaney, Allen
    Griffith, Malachi
    Hickenbotham, Matthew
    Magrini, Vincent
    Mardis, Elaine R.
    Sadar, Marianne D.
    Siddiqui, Asim S.
    Marra, Marco A.
    Jones, Steven J. M.
    [J]. BMC GENOMICS, 2006, 7 (1)
  • [9] Species and population specific gene expression in blood transcriptomes of marine turtles
    Banerjee, Shreya M.
    Stoll, Jamie Adkins
    Allen, Camryn D.
    Lynch, Jennifer M.
    Harris, Heather S.
    Kenyon, Lauren
    Connon, Richard E.
    Sterling, Eleanor J.
    Naro-Maciel, Eugenia
    McFadden, Kathryn
    Lamont, Margaret M.
    Benge, James
    Fernandez, Nadia B.
    Seminoff, Jeffrey A.
    Benson, Scott R.
    Lewison, Rebecca L.
    Eguchi, Tomoharu
    Summers, Tammy M.
    Hapdei, Jessy R.
    Rice, Marc R.
    Martin, Summer
    Jones, T. Todd
    Dutton, Peter H.
    Balazs, George H.
    Komoroske, Lisa M.
    [J]. BMC GENOMICS, 2021, 22 (01)
  • [10] Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays
    Bloom, Joshua S.
    Khan, Zia
    Kruglyak, Leonid
    Singh, Mona
    Caudy, Amy A.
    [J]. BMC GENOMICS, 2009, 10