Spiking Reservoir Networks: Brain-inspired recurrent algorithms that use random, fixed synaptic strengths

被引:6
作者
Soures, Nicholas [1 ,2 ]
Kudithipudi, Dhireesha [2 ,3 ]
机构
[1] Rochester Inst Technol, Comp Engn, New York, NY 14623 USA
[2] IEEE, Piscataway, NJ 08854 USA
[3] Rochester Inst Technol, Neuromorph Artificial Intelligence Lab, New York, NY USA
关键词
Neurons; Signal processing algorithms; Machine learning; Artificial neural networks; Neuromorphics; Bio-inspired computing; Brain modeling; Recurrent neural networks; Computational modeling; DISCRIMINATION; NEURONS;
D O I
10.1109/MSP.2019.2931479
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A class of brain-inspired recurrent algorithms known as < italic > reservoir computing (RC) networks </italic > reduces the computational complexity and cost of training machine-learning models by using random, fixed synaptic strengths. This article offers insights about a spiking reservoir network, the liquid state machine (LSM), the inner workings of the algorithm, the design metrics, and neuromorphic designs. The discussion extends to variations of the LSM that incorporate local plasticity mechanisms and hierarchy to improve performance and memory capacity.
引用
收藏
页码:78 / 87
页数:10
相关论文
共 30 条
[1]  
[Anonymous], ICPP 18
[2]  
[Anonymous], THESIS
[3]  
[Anonymous], 2015, Spiking deep networks with LIF neurons
[4]  
[Anonymous], DEEP ESN MULTIPLE PR
[5]  
[Anonymous], FRAUNHOFER I AUTONOM
[6]  
[Anonymous], P IEEE INT C REB COM
[7]  
[Anonymous], COMP DEEP ESNS GATED
[8]   The Sparseness of Mixed Selectivity Neurons Controls the Generalization-Discrimination Trade-Off [J].
Barak, Omri ;
Rigotti, Mattia ;
Fusi, Stefano .
JOURNAL OF NEUROSCIENCE, 2013, 33 (09) :3844-3856
[9]  
Bellec G, 2018, LONG SHORT TERM MEMO
[10]   Loihi: A Neuromorphic Manycore Processor with On-Chip Learning [J].
Davies, Mike ;
Srinivasa, Narayan ;
Lin, Tsung-Han ;
Chinya, Gautham ;
Cao, Yongqiang ;
Choday, Sri Harsha ;
Dimou, Georgios ;
Joshi, Prasad ;
Imam, Nabil ;
Jain, Shweta ;
Liao, Yuyun ;
Lin, Chit-Kwan ;
Lines, Andrew ;
Liu, Ruokun ;
Mathaikutty, Deepak ;
Mccoy, Steve ;
Paul, Arnab ;
Tse, Jonathan ;
Venkataramanan, Guruguhanathan ;
Weng, Yi-Hsin ;
Wild, Andreas ;
Yang, Yoonseok ;
Wang, Hong .
IEEE MICRO, 2018, 38 (01) :82-99