SINGULARITY OF SPARSE BERNOULLI MATRICES

被引:8
作者
Litvak, Alexander E. [1 ]
Tikhomirov, Konstantin E. [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
[2] Georgia Tech, Sch Math, Atlanta, GA USA
关键词
CIRCULAR LAW; INVERTIBILITY;
D O I
10.1215/00127094-2021-0056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-n be an n x n random matrix with independent and identically distributed Bernoulli(p) entries. We show that there is a universal constant C >= 1 such that, whenever p and n satisfy C log n/n <= p <= C-1, P{M-n is singular} = (1 + o(n)(1))P{M-n contains a zero row or column} = (2 + o(n)(1))n(1-p)(n); where o(n)(1) denotes a quantity which converges to zero as n -> infinity. We provide the corresponding upper and lower bounds on the smallest singular value of M-n as well.
引用
收藏
页码:1135 / 1233
页数:99
相关论文
共 50 条
[1]  
[Anonymous], 1943, Rec. Math. Mat. Sbornik N.S.
[2]  
[Anonymous], 2012, Panoramas et Syntheses Panoramas and Syntheses
[3]   SHARP NONASYMPTOTIC BOUNDS ON THE NORM OF RANDOM MATRICES WITH INDEPENDENT ENTRIES [J].
Bandeira, Afonso S. ;
van Handel, Ramon .
ANNALS OF PROBABILITY, 2016, 44 (04) :2479-2506
[4]   Sharp transition of the invertibility of the adjacency matrices of sparse random graphs [J].
Basak, Anirban ;
Rudelson, Mark .
PROBABILITY THEORY AND RELATED FIELDS, 2021, 180 (1-2) :233-308
[5]   THE CIRCULAR LAW FOR SPARSE NON-HERMITIAN MATRICES [J].
Basak, Anirban ;
Rudelson, Mark .
ANNALS OF PROBABILITY, 2019, 47 (04) :2359-2416
[6]   Circular law for the sum of random permutation matrices [J].
Basak, Anirban ;
Cook, Nicholas ;
Zeitouni, Ofer .
ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
[7]   Invertibility of sparse non-Hermitian matrices [J].
Basak, Anirban ;
Rudelson, Mark .
ADVANCES IN MATHEMATICS, 2017, 310 :426-483
[8]  
Boucheron S., 2013, Concentration inequalities: A nonasymptotic theory of independence, DOI 10.1093/acprof:oso/9780199535255.001.0001
[9]   On the singularity probability of discrete random matrices [J].
Bourgain, Jean ;
Vu, Van H. ;
Wood, Philip Matchett .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (02) :559-603
[10]   The Circular Law for random regular digraphs [J].
Cook, Nicholas A. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04) :2111-2167