Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow

被引:28
作者
von Kameke, A. [1 ]
Huhn, F. [1 ]
Fernandez-Garcia, G. [1 ]
Munuzuri, A. P. [1 ]
Perez-Munuzuri, V. [1 ]
机构
[1] Univ Santiago Compostela, Grp Nonlinear Phys, E-15782 Santiago De Compostela, Spain
关键词
ANOMALOUS DIFFUSION; STOCHASTIC PATHWAY; CAPILLARY WAVES; LEVY FLIGHTS; RANDOM-WALK; TRANSPORT; DYNAMICS; PATTERNS; OXYGEN; CHAOS;
D O I
10.1103/PhysRevE.81.066211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Pattern formation in reaction-diffusion systems is an important self-organizing mechanism in nature. Dynamics of systems with normal diffusion do not always reflect the processes that take place in real systems when diffusion is enhanced by a fluid flow. In such reaction-diffusion-advection systems diffusion might be anomalous for certain time and length scales. We experimentally study the propagation of a chemical wave occurring in a Belousov-Zhabotinsky reaction subjected to a quasi-two-dimensional chaotic flow created by the Faraday experiment. We present a novel analysis technique for the local expansion of the active wave front and find evidence of its superdiffusivity. In agreement with these findings the variance sigma(2)(t) proportional to t(gamma) of the reactive wave grows supralinear in time with an exponent gamma>2. We study the characteristics of the underlying flow with microparticles. By statistical analysis of particle trajectories we derive flight time and jump length distributions and find evidence that tracer-particles undergo complex trajectories related to Levy statistics. The propagation of active and passive media in the flow is compared.
引用
收藏
页数:9
相关论文
共 53 条
[11]   Chemical-wave dynamics in a vertically oscillating fluid layer [J].
Fernandez-Garcia, G. ;
Roncaglia, D. I. ;
Perez-Villar, V. ;
Munuzuri, A. P. ;
Perez-Munuzuri, V. .
PHYSICAL REVIEW E, 2008, 77 (02)
[12]   Superdiffusive wave front propagation in a chemical active flow [J].
Fernandez-Garcia, G. ;
Perez-Munuzuri, V. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 165 (1) :169-174
[13]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[14]   Lagrangian chaos and correlated Levy flights in a non-Beltrami flow: Transient versus long-term transport [J].
Fogleman, M.A. ;
Fawcett, M.J. ;
Solomon, T.H. .
2001, American Inst of Physics, Woodbury, NY, United States (63)
[15]   Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems [J].
Gafiychuk, V. V. ;
Datsko, B. Y. .
PHYSICAL REVIEW E, 2007, 75 (05)
[16]   Fractional diffusion: probability distributions and random walk models [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Pagnini, G ;
Paradisi, P .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) :106-112
[17]  
GORENFLO R, 2008, ANOMALOUS TRANSPORT
[18]   Fractal particle trajectories in capillary waves: Imprint of wavelength [J].
Hansen, AE ;
Schroder, E ;
Alstrom, P ;
Andersen, JS ;
Levinsen, MT .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1845-1848
[19]   PERCOLATION, STATISTICAL TOPOGRAPHY, AND TRANSPORT IN RANDOM-MEDIA [J].
ISICHENKO, MB .
REVIEWS OF MODERN PHYSICS, 1992, 64 (04) :961-1043
[20]   The effect of oxygen on time-dependent bifurcations in the Belousov-Zhabotinsky oscillating chemical reaction in a batch [J].
Kalishyn, YY ;
Rachwalska, M ;
Khavrus, VO ;
Strizhak, PE .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2005, 7 (08) :1680-1686