Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow

被引:28
作者
von Kameke, A. [1 ]
Huhn, F. [1 ]
Fernandez-Garcia, G. [1 ]
Munuzuri, A. P. [1 ]
Perez-Munuzuri, V. [1 ]
机构
[1] Univ Santiago Compostela, Grp Nonlinear Phys, E-15782 Santiago De Compostela, Spain
关键词
ANOMALOUS DIFFUSION; STOCHASTIC PATHWAY; CAPILLARY WAVES; LEVY FLIGHTS; RANDOM-WALK; TRANSPORT; DYNAMICS; PATTERNS; OXYGEN; CHAOS;
D O I
10.1103/PhysRevE.81.066211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Pattern formation in reaction-diffusion systems is an important self-organizing mechanism in nature. Dynamics of systems with normal diffusion do not always reflect the processes that take place in real systems when diffusion is enhanced by a fluid flow. In such reaction-diffusion-advection systems diffusion might be anomalous for certain time and length scales. We experimentally study the propagation of a chemical wave occurring in a Belousov-Zhabotinsky reaction subjected to a quasi-two-dimensional chaotic flow created by the Faraday experiment. We present a novel analysis technique for the local expansion of the active wave front and find evidence of its superdiffusivity. In agreement with these findings the variance sigma(2)(t) proportional to t(gamma) of the reactive wave grows supralinear in time with an exponent gamma>2. We study the characteristics of the underlying flow with microparticles. By statistical analysis of particle trajectories we derive flight time and jump length distributions and find evidence that tracer-particles undergo complex trajectories related to Levy statistics. The propagation of active and passive media in the flow is compared.
引用
收藏
页数:9
相关论文
共 53 条
[1]   TRANSPORT ASPECTS IN ANOMALOUS DIFFUSION - LEVY WALKS [J].
BLUMEN, A ;
ZUMOFEN, G ;
KLAFTER, J .
PHYSICAL REVIEW A, 1989, 40 (07) :3964-3974
[2]   Fronts and trigger wave patterns in an array of oscillating vortices [J].
Boehmer, J. R. ;
Solomon, T. H. .
EPL, 2008, 83 (05)
[3]   STOCHASTIC PATHWAY TO ANOMALOUS DIFFUSION - COMMENT [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICAL REVIEW A, 1990, 41 (02) :1156-1157
[4]   Front propagation in reaction-superdiffusion dynamics: Taming Levy flights with fluctuations [J].
Brockmann, D. ;
Hufnagel, L. .
PHYSICAL REVIEW LETTERS, 2007, 98 (17)
[5]   The scaling laws of human travel [J].
Brockmann, D ;
Hufnagel, L ;
Geisel, T .
NATURE, 2006, 439 (7075) :462-465
[6]   On strong anomalous diffusion [J].
Castiglione, P ;
Mazzino, A ;
Muratore-Ginanneschi, P ;
Vulpiani, A .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (01) :75-93
[7]   Front dynamics in reaction-diffusion systems with Levy flights: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)
[8]  
Del-Castillo-Negrete D, 2008, Anomalous transport: Foundations and applications
[9]   The effect of small-scale inhomogeneities on ozone depletion in the Arctic [J].
Edouard, S ;
Legras, B ;
Lefevre, F ;
Eymard, R .
NATURE, 1996, 384 (6608) :444-447
[10]  
Faraday M., 1831, Philosophical Transactions of the Royal Society of London, V121, P299