Engineering a Novel Porin OmpGF Via Strand Replacement from Computational Analysis of Sequence Motif

被引:6
作者
Lin, Meishan [1 ]
Zhang, Ge [1 ,2 ]
Fahie, Monifa [3 ]
Morgan, Leslie K. [4 ]
Chen, Min [3 ]
Keiderling, Timothy A. [2 ]
Kenney, Linda J. [4 ,5 ]
Liang, Jie [1 ]
机构
[1] Univ Illinois, Dept Bioengn, Chicago, IL 60612 USA
[2] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
[3] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA
[4] Univ Illinois, Dept Microbiol & Immunol, Chicago, IL 60612 USA
[5] Natl Univ Singapore, Mechanobiol Inst, Singapore 117411, Singapore
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2017年 / 1859卷 / 07期
关键词
Protein engineering; Membrane proteins; Sequence motif; beta-Barrel protein; Nanopores; Porins; OUTER-MEMBRANE PROTEIN; ESCHERICHIA-COLI; TRANSMEMBRANE DOMAINS; BETA-LACTOGLOBULIN; CRYSTAL-STRUCTURES; LIPID-BILAYERS; IN-VITRO; NANOPORE; CHANNEL; CHAIN;
D O I
10.1016/j.bbamem.2017.03.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
beta-Barrelmembrane proteins (beta MPs) form barrel-shaped pores in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. Because of the robustness of their barrel structures, beta MPs have great potential as nanosensors for single-molecule detection. However, natural beta MPs currently employed have inflexible biophysical properties and are limited in their pore geometry, hindering their applications in sensing molecules of different sizes and properties. Computational engineering has the promise to generate beta MPs with desired properties. Here we report a method for engineering novel beta MPs based on the discovery of sequence motifs that predominantly interact with the cell membrane and appear in more than 75% of transmembrane strands. By replacing beta 1-beta 6 strands of the protein OmpF that lack these motifs with beta 1-beta 6 strands of OmpG enriched with these motifs and computational verification of increased stability of its transmembrane section, we engineered a novel beta MP called OmpGF. OmpGF is predicted to form a monomer with a stable transmembrane region. Experimental validations showed that OmpGF could refold in vitro with a predominant beta-sheet structure, as confirmed by circular dichroism. Evidence of OmpGF membrane insertion was provided by intrinsic tryptophan fluorescence spectroscopy, and its pore-forming property was determined by a dye-leakage assay. Furthermore, single-channel conductance measurements confirmed that OmpGF function as a monomer and exhibits increased conductance than OmpG and OmpF. These results demonstrated that a novel and functional beta MP can be successfully engineered through strand replacement based on sequence motif analysis and stability calculation. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1180 / 1189
页数:10
相关论文
共 70 条
[1]   Gene duplication of the eight-stranded β-barrel OmpX produces a functional pore:: A scenario for the evolution of transmembrane β-barrels [J].
Arnold, Thomas ;
Poynor, Melissa ;
Nussberger, Stephan ;
Lupas, Andrei N. ;
Linke, Dirk .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 366 (04) :1174-1184
[2]   Nanopore-Based Identification of Individual Nucleotides for Direct RNA Sequencing [J].
Ayub, Mariam ;
Hardwick, Steven W. ;
Luisi, Ben F. ;
Bayley, Hagan .
NANO LETTERS, 2013, 13 (12) :6144-6150
[3]   Stochastic sensors inspired by biology [J].
Bayley, H ;
Cremer, PS .
NATURE, 2001, 413 (6852) :226-230
[4]   MUTATIONS THAT ALTER THE PORE FUNCTION OF THE OMPF PORIN OF ESCHERICHIA-COLI-K12 [J].
BENSON, SA ;
OCCI, JLL ;
SAMPSON, BA .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 203 (04) :961-970
[5]   Stability studies of FhuA, a two-domain outer membrane protein from Escherichia coli [J].
Bonhivers, M ;
Desmadril, M ;
Moeck, GS ;
Boulanger, P ;
Colomer-Pallas, A ;
Letellier, L .
BIOCHEMISTRY, 2001, 40 (08) :2606-2613
[6]   The potential and challenges of nanopore sequencing [J].
Branton, Daniel ;
Deamer, David W. ;
Marziali, Andre ;
Bayley, Hagan ;
Benner, Steven A. ;
Butler, Thomas ;
Di Ventra, Massimiliano ;
Garaj, Slaven ;
Hibbs, Andrew ;
Huang, Xiaohua ;
Jovanovich, Stevan B. ;
Krstic, Predrag S. ;
Lindsay, Stuart ;
Ling, Xinsheng Sean ;
Mastrangelo, Carlos H. ;
Meller, Amit ;
Oliver, John S. ;
Pershin, Yuriy V. ;
Ramsey, J. Michael ;
Riehn, Robert ;
Soni, Gautam V. ;
Tabard-Cossa, Vincent ;
Wanunu, Meni ;
Wiggin, Matthew ;
Schloss, Jeffery A. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1146-1153
[7]   Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region [J].
Bredin, J ;
Saint, N ;
Malléa, M ;
Dé, E ;
Molle, G ;
Pagès, JM ;
Simonet, V .
BIOCHEMICAL JOURNAL, 2002, 363 :521-528
[8]   Mutational and Topological Analysis of the Escherichia coli BamA Protein [J].
Browning, Douglas F. ;
Matthews, Sophie A. ;
Rossiter, Amanda E. ;
Sevastsyanovich, Yanina R. ;
Jeeves, Mark ;
Mason, Jessica L. ;
Wells, Timothy J. ;
Wardius, Catherine A. ;
Knowles, Timothy J. ;
Cunningham, Adam F. ;
Bavro, Vassiliy N. ;
Overduin, Michael ;
Henderson, Ian R. .
PLOS ONE, 2013, 8 (12)
[9]   β-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro [J].
Burgess, Nancy K. ;
Dao, Thuy P. ;
Stanley, Ann Marie ;
Fleming, Karen G. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (39) :26748-26758
[10]   In vivo and in vitro studies of transmembrane β-strand deletion, insertion or substitution mutants of the Escherichia coli K-12 maltoporin [J].
Charbit, A ;
Andersen, C ;
Wang, JA ;
Schiffler, B ;
Michel, V ;
Benz, R ;
Hofnung, M .
MOLECULAR MICROBIOLOGY, 2000, 35 (04) :777-790