Review of zinc-based hybrid flow batteries: From fundamentals to applications

被引:271
作者
Khor, A. [1 ,2 ]
Leung, P. [3 ]
Mohamed, M. R. [2 ]
Flox, C. [1 ]
Xu, Q. [4 ]
An, L. [5 ]
Wills, R. G. A. [6 ]
Morante, J. R. [1 ]
Shah, A. A. [7 ]
机构
[1] Catalonia Inst Energy Res, IREC, St Adria De Besos, Spain
[2] Univ Malaysia Pahang, Fac Elect & Elect Engn, Pekan, Malaysia
[3] Univ Oxford, Dept Mat, Oxford, England
[4] Jiangsu Univ, Inst Energy Res, Zhenjiang, Peoples R China
[5] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[6] Univ Southampton, Energy Technol Grp, Southampton, Hants, England
[7] Univ Warwick, Sch Engn, Coventry, W Midlands, England
关键词
Applications; Electrodeposition; Plating; Redox flow batteries; Zinc; HIGH-ENERGY-DENSITY; CHARGE-DISCHARGE CHARACTERISTICS; ACIDIC SULFATE ELECTROLYTES; CE3+/CE4+ REDOX COUPLE; HYDROGEN EVOLUTION; HALF-CELL; NEGATIVE ELECTRODE; SUPPORTING ELECTROLYTES; ZN ELECTRODEPOSITION; CORROSION BEHAVIOR;
D O I
10.1016/j.mtener.2017.12.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zinc-based hybrid flow batteries are one of the most promising systems for medium-to large-scale energy storage applications, with particular advantages in terms of cost, cell voltage and energy density. Several of these systems are amongst the few flow battery chemistries that have been scaled up and commercialized. The existing zinc-based systems rely on zinc electrodeposition in flowing electrolytes as the negative electrode reaction, which is coupled with organic or inorganic positive active species in either solid, liquid or gaseous phases. These reactions are facilitated with specific cell architectures under certain circumstances. To improve the performance and cycle life of these batteries, this review provides fundamental information on zinc electrodeposition and summarizes recent developments in the relevant flow battery chemistries, along with recent applications. The future challenges and opportunities for this technology are discussed. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:80 / 108
页数:29
相关论文
共 260 条
[31]  
Cathro K.J., 1986, ENERGY ZINC BROMINE
[32]   SELECTION OF QUATERNARY AMMONIUM BROMIDES FOR USE IN ZINC BROMINE CELLS [J].
CATHRO, KJ ;
CEDZYNSKA, K ;
CONSTABLE, DC ;
HOOBIN, PM .
JOURNAL OF POWER SOURCES, 1986, 18 (04) :349-370
[33]   Hyper-dendritic nanoporous zinc foam anodes [J].
Chamoun, Mylad ;
Hertzberg, Benjamin J. ;
Gupta, Tanya ;
Davies, Daniel ;
Bhadra, Shoham ;
Van Tassell, Barry ;
Erdonmez, Can ;
Steingart, Daniel A. .
NPG ASIA MATERIALS, 2015, 7 :e178-e178
[34]   Preliminary study of single flow zinc-nickel battery [J].
Cheng, Jie ;
Zhang, Li ;
Yang, Yu-Sheng ;
Wen, Yue-Hua ;
Cao, Gao-Ping ;
Wang, Xin-Dong .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (11) :2639-2642
[35]   Performance and potential problems of high power density zinc-nickel single flow batteries [J].
Cheng, Yuanhui ;
Xi, Xiaoli ;
Li, Dan ;
Li, Xianfeng ;
Lai, Qinzhi ;
Zhang, Huamin .
RSC ADVANCES, 2015, 5 (03) :1772-1776
[36]   Zinc-nickel single flow batteries with improved cycling stability by eliminating zinc accumulation on the negative electrode [J].
Cheng, Yuanhui ;
Lai, Qinzhi ;
Li, Xianfeng ;
Xi, Xiaoli ;
Zheng, Qiong ;
Ding, Cong ;
Zhang, Huamin .
ELECTROCHIMICA ACTA, 2014, 145 :109-115
[37]   A high power density single flow zinc-nickel battery with three-dimensional porous negative electrode [J].
Cheng, Yuanhui ;
Zhang, Huamin ;
Lai, Qinzhi ;
Li, Xianfeng ;
Shi, Dingqin ;
Zhang, Liqun .
JOURNAL OF POWER SOURCES, 2013, 241 :196-202
[38]   A review of vanadium electrolytes for vanadium redox flow batteries [J].
Choi, Chanyong ;
Kim, Soohyun ;
Kim, Riyul ;
Choi, Yunsuk ;
Kim, Soowhan ;
Jung, Ho-Young ;
Yang, Jung Hoon ;
Kim, Hee-Tak .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 69 :263-274
[39]  
Clark N., 1999, DEV ZINC BROMINE BAT
[40]  
Clarke R., 2004, US Patent, Patent No. 20040202925