The acyclicity of the Frobenius functor for modules of finite flat dimension

被引:4
作者
Marley, Thomas [1 ]
Webb, Marcus [2 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[2] Stephen F Austin State Univ, Dept Math & Stat, Nacogdoches, TX 75962 USA
关键词
COVERS; RINGS;
D O I
10.1016/j.jpaa.2016.01.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative Noetherian local ring of prime characteristic p and f : R -> R the Frobenius ring homomorphism. For e >= 1 let R-(e) denote the ring R viewed as an R-module via f(e). Results of Peskine, Szpiro, and Herzog state that for finitely generated modules M, M has finite projective dimension if and only if Tor(i)(R)(R-(e), M) = 0 for all i > 0 and all (equivalently, infinitely many) e >= 1. We prove this statement holds for arbitrary modules using the theory of flat covers and minimal flat resolutions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2886 / 2896
页数:11
相关论文
共 18 条
[1]  
Auslander M., 1958, Transactions of the American Mathematical Society, V88, P194, DOI DOI 10.1090/S0002-9947-1958-0096720-1
[2]   GROTHENDIECK GROUPS AND PICARD GROUPS OF ABELIAN GROUP RINGS [J].
BASS, H ;
MURTHY, MP .
ANNALS OF MATHEMATICS, 1967, 86 (01) :16-&
[3]  
Bass H., 1962, T AM MATH SOC, V162, P319
[4]   All modules have flat covers [J].
Bican, L ;
El Bashir, R ;
Enochs, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :385-390
[5]  
Dailey D., FROBENIUS RIGI UNPUB
[6]   FLAT COVERS AND FLAT COTORSION MODULES [J].
ENOCHS, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 92 (02) :179-184
[7]   On invariants dual to the Bass numbers [J].
Enochs, E ;
Xu, JZ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (04) :951-960
[8]   MU-L IN A MINIMAL INJECTIVE RESOLUTION-II [J].
FOXBY, HB .
MATHEMATICA SCANDINAVICA, 1977, 41 (01) :19-44
[9]   P CHARACTERISTIC RING AND FROBENIUS FUNCTORS [J].
HERZOG, J .
MATHEMATISCHE ZEITSCHRIFT, 1974, 140 (01) :67-78
[10]   Depth for complexes, and intersection theorems [J].
Iyengar, S .
MATHEMATISCHE ZEITSCHRIFT, 1999, 230 (03) :545-567