Facial Emotion Recognition Using an Ensemble of Multi-Level Convolutional Neural Networks

被引:33
作者
Hai-Duong Nguyen [1 ]
Yeom, Soonja [2 ]
Lee, Guee-Sang [1 ]
Yang, Hyung-Jeong [1 ]
Na, In-Seop [3 ]
Kim, Soo-Hyung [1 ]
机构
[1] Chonnam Natl Univ, Sch Elect & Comp Engn, Gwangju, South Korea
[2] Univ Tasmania, Sch Engn & ICT, Hobart, Tas, Australia
[3] Chosun Univ, Software Convergence Educ Inst, Gwangju, South Korea
基金
新加坡国家研究基金会;
关键词
Ensemble model; facial emotion recognition in the wild; FER2013; hierarchical features; multi-level convolutional neural networks;
D O I
10.1142/S0218001419400159
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion recognition plays an indispensable role in human-machine interaction system. The process includes finding interesting facial regions in images and classifying them into one of seven classes: angry, disgust, fear, happy, neutral, sad, and surprise. Although many breakthroughs have been made in image classification, especially in facial expression recognition, this research area is still challenging in terms of wild sampling environment. In this paper, we used multi-level features in a convolutional neural network for facial expression recognition. Based on our observations, we introduced various network connections to improve the classification task. By combining the proposed network connections, our method achieved competitive results compared to state-of-the-art methods on the FER2013 dataset.
引用
收藏
页数:17
相关论文
共 32 条
[11]   CONSTANTS ACROSS CULTURES IN FACE AND EMOTION [J].
EKMAN, P ;
FRIESEN, WV .
JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 1971, 17 (02) :124-&
[12]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136
[13]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[14]  
Jieru Wang, 2016, Advances in Multimedia Information Processing - PCM 2016. 17th Pacific-Rim Conference on Multimedia. Proceedings: LNCS 9916, P376, DOI 10.1007/978-3-319-48890-5_37
[15]   Hierarchical committee of deep convolutional neural networks for robust facial expression recognition [J].
Kim, Bo-Kyeong ;
Roh, Jihyeon ;
Dong, Suh-Yeon ;
Lee, Soo-Young .
JOURNAL ON MULTIMODAL USER INTERFACES, 2016, 10 (02) :173-189
[16]  
Krizhevsky A., 2009, LEARNING MULTIPLE LA, P5
[17]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[18]   Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks [J].
Lee, Honglak ;
Grosse, Roger ;
Ranganath, Rajesh ;
Ng, Andrew Y. .
COMMUNICATIONS OF THE ACM, 2011, 54 (10) :95-103
[19]  
Lucey P., 2010, P 2010 IEEE COMP VIS, P94
[20]   DISFA: A Spontaneous Facial Action Intensity Database [J].
Mavadati, S. Mohammad ;
Mahoor, Mohammad H. ;
Bartlett, Kevin ;
Trinh, Philip ;
Cohn, Jeffrey F. .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2013, 4 (02) :151-160