Asymptotic expansions for multivariate polynomial approximation

被引:9
作者
Walz, G [1 ]
机构
[1] Univ Mannheim, Dept Math & Comp Sci, D-68131 Mannheim, Germany
关键词
asymptotic expansion; Bernstein operator; convergence acceleration; extrapolation; multivariate polynomial approximation;
D O I
10.1016/S0377-0427(00)00358-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the approximation of multivariate functions by (multivariate) Bernstein polynomials is considered; Building on recent work of Lai (J. Approx. Theory 70 (1992) 229-242), we can prove that the sequence of these Bernstein polynomials possesses an asymptotic expansion with respect to the index n. This generalizes a corresponding result due to Costabile et al. (BIT 36 (1996) 676-687) on univariate Bernstein polynomials, providing at the same time a new proof for it. After having shown the existence of an asymptotic expansion we can apply an extrapolation algorithm which accelerates the convergence of the Bernstein polynomials considerably; this leads to a new and very efficient method for polynomial approximation of multivariate functions. Numerical examples illustrate our approach. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:317 / 328
页数:12
相关论文
共 7 条
  • [1] BREZINSKI C, 1992, EXTRAPOLATION METHOD
  • [2] Asymptotic expansion and extrapolation for Bernstein polynomials with applications
    Costabile, F
    Gualtieri, MI
    Serra, S
    [J]. BIT, 1996, 36 (04): : 676 - 687
  • [3] ASYMPTOTIC FORMULAS OF MULTIVARIATE BERNSTEIN APPROXIMATION
    LAI, MJ
    [J]. JOURNAL OF APPROXIMATION THEORY, 1992, 70 (02) : 229 - 242
  • [4] Lorentz G.G., 1953, Bernstein Polynomials
  • [5] Meinardus G., 1979, PRAKTISCHE MATH, VII
  • [6] Voronovskaja E., 1932, Dokl. Akad. Nauk SSSR, Ser. A., P79
  • [7] Walz, 1996, ASYMPTOTICS EXTRAPOL