Thermal to Visible Facial Image Translation Using Generative Adversarial Networks

被引:47
作者
Wang, Zhongling [1 ]
Chen, Zhenzhong [1 ,2 ]
Wu, Feng [3 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430072, Hubei, Peoples R China
[3] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230027, Anhui, Peoples R China
基金
国家重点研发计划;
关键词
Face; generative adversarial network (GAN); image translation; infrared; thermal; LANDMARKS;
D O I
10.1109/LSP.2018.2845692
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thermal cameras can capture images invariant to illumination conditions. However, thermal facial images are difficult to be recognized by human examiners. In this letter, an end-to-end framework, which consists of a generative network and a detector network, is proposed to translate thermal facial images into visible ones. The generative network aims at generating visible images given the thermal ones. The detector can locate important facial landmarks on visible faces and help the generative network to generate more realistic images that are easier to be recognized. As demonstrated in the experiments, the faces generated by our method have good visual quality and maintain identity preserving features.
引用
收藏
页码:1161 / 1165
页数:5
相关论文
共 50 条
  • [41] Improved Generative Adversarial Networks for VHR Remote Sensing Image Classification
    Shi, Cheng
    Fang, Li
    Lv, Zhiyong
    Shen, Huifang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [42] HIGH RESOLUTION SAR IMAGE SYNTHESIS WITH HIERARCHICAL GENERATIVE ADVERSARIAL NETWORKS
    Huang, Henghua
    Zhang, Fan
    Zhou, Yongsheng
    Yin, Qiang
    Hu, Wei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2782 - 2785
  • [43] Data Augmentation with Generative Adversarial Networks for Grocery Product Image Recognition
    Wei, Yuchen
    Xu, Shuxiang
    Son Tran
    Kang, Byeong
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 963 - 968
  • [44] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173
  • [45] Triple-BigGAN: Semi-supervised generative adversarial networks for image synthesis and classification on sexual facial expression recognition
    Gangwar, Abhishek
    Gonzalez-Castro, Victor
    Alegre, Enrique
    Fidalgo, Eduardo
    NEUROCOMPUTING, 2023, 528 : 200 - 216
  • [46] LBP-BEGAN: A generative adversarial network architecture for infrared and visible image fusion
    Xu, Jiangtao
    Shi, Xingping
    Qin, Shuzhen
    Lu, Kaige
    Wang, Han
    Ma, Jianguo
    INFRARED PHYSICS & TECHNOLOGY, 2020, 104
  • [47] SHIFT: speedy histopathological-to-immunofluorescent translation of whole slide images using conditional generative adversarial networks
    Burlingame, Erik A.
    Margolin, Adam A.
    Gray, Joe W.
    Chang, Young Hwan
    MEDICAL IMAGING 2018: DIGITAL PATHOLOGY, 2018, 10581
  • [48] Light the Way: An Enhanced Generative Adversarial Network Framework for Night-to-Day Image Translation With Improved Quality
    Lakmal, H. K. I. S.
    Dissanayake, Maheshi B.
    Aramvith, Supavadee
    IEEE ACCESS, 2024, 12 : 165963 - 165978
  • [49] Sparsely Grouped Multi-Task Generative Adversarial Networks for Facial Attribute Manipulation
    Zhang, Jichao
    Shu, Yezhi
    Xu, Songhua
    Cao, Gongze
    Zhong, Fan
    Liu, Meng
    Qin, Xueying
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 392 - 401
  • [50] A Realistic Image Generation of Face From Text Description Using the Fully Trained Generative Adversarial Networks
    Khan, Muhammad Zeeshan
    Jabeen, Saira
    Khan, Muhammad Usman Ghani
    Saba, Tanzila
    Rehmat, Asim
    Rehman, Amjad
    Tariq, Usman
    IEEE ACCESS, 2021, 9 : 1250 - 1260