McKay correspondence for the Poincare series of Kleinian and Fuchsian singularities

被引:10
作者
Ebeling, Wolfgang [1 ]
Ploog, David [1 ]
机构
[1] Leibniz Univ Hannover, Inst Algebra Geometrie, D-30060 Hannover, Germany
关键词
NORMAL SURFACE SINGULARITIES; WILD CANONICAL ALGEBRAS; C-STAR-ACTION; AUTOMORPHIC-FORMS;
D O I
10.1007/s00208-009-0451-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a uniform and, to a large extent, geometrical proof that the Poincare series of the coordinate algebra of a Kleinian singularity and of a Fuchsian singularity of genus 0 is the quotient of the characteristic polynomials of two Coxeter elements. These Coxeter elements are interpreted geometrically, using 2-Calabi-Yau triangulated categories and spherical twist functors.
引用
收藏
页码:689 / 702
页数:14
相关论文
共 22 条
[1]  
[Anonymous], 2006, OXFORD MATH MONOGR
[2]  
Dolgachev I.V., 1975, FUNCT ANAL APPL, V9, p[149, 67]
[3]  
Dolgachev IV, 2009, CRM PROC & LECT NOTE, V47, P111
[4]   ON THE LINK SPACE OF A GORENSTEIN QUASIHOMOGENEOUS SURFACE SINGULARITY [J].
DOLGACHEV, IV .
MATHEMATISCHE ANNALEN, 1983, 265 (04) :529-540
[5]  
DOLGACHEV IV, AUTOMORPHIC FORMS WE
[6]   Tame and wild projective curves and classification of vector bundles [J].
Drozd, YA ;
Greuel, GM .
JOURNAL OF ALGEBRA, 2001, 246 (01) :1-54
[7]   The Poincare series of some special quasihomogeneous surface singularities [J].
Ebeling, W .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2003, 39 (02) :393-413
[8]   Poincare series and monodromy of a two-dimensional quasihomogeneous hypersurface singularity [J].
Ebeling, W .
MANUSCRIPTA MATHEMATICA, 2002, 107 (03) :271-282
[9]  
GONZALEZSPRINBERG G, 1983, ANN SCI ECOLE NORM S, V16, P409
[10]   McKay correspondence and Hilbert schemes in dimension three [J].
Ito, Y ;
Nakajima, H .
TOPOLOGY, 2000, 39 (06) :1155-1191