Trade-offs between land and water requirements for large-scale bioenergy production

被引:109
作者
Bonsch, Markus [1 ,2 ]
Humpenoeder, Florian [1 ,2 ]
Popp, Alexander [1 ]
Bodirsky, Benjamin [1 ,2 ]
Dietrich, Jan Philipp [1 ]
Rolinski, Susanne [1 ]
Biewald, Anne [1 ]
Lotze-Campen, Hermann [1 ,3 ]
Weindl, Isabelle [1 ,3 ]
Gerten, Dieter [1 ]
Stevanovic, Miodrag [1 ,2 ]
机构
[1] Potsdam Inst Climate Impact Res PIK, D-14473 Potsdam, Germany
[2] Tech Univ Berlin, Econ Climate Change, D-10623 Berlin, Germany
[3] Humboldt Univ, D-10099 Berlin, Germany
来源
GLOBAL CHANGE BIOLOGY BIOENERGY | 2016年 / 8卷 / 01期
关键词
bioenergy; land; land-use model; projection; sustainability; water; water-land nexus; NET PRIMARY PRODUCTION; HUMAN APPROPRIATION; ECONOMIC-IMPACTS; FOOD SECURITY; CONSERVATION; BIODIVERSITY; EMISSIONS; ENERGY; MODEL; MITIGATION;
D O I
10.1111/gcbb.12226
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Bioenergy is expected to play an important role in the future energy mix as it can substitute fossil fuels and contribute to climate change mitigation. However, large-scale bioenergy cultivation may put substantial pressure on land and water resources. While irrigated bioenergy production can reduce the pressure on land due to higher yields, associated irrigation water requirements may lead to degradation of freshwater ecosystems and to conflicts with other potential users. In this article, we investigate the trade-offs between land and water requirements of large-scale bioenergy production. To this end, we adopt an exogenous demand trajectory for bioenergy from dedicated energy crops, targeted at limiting greenhouse gas emissions in the energy sector to 1100 Gt carbon dioxide equivalent until 2095. We then use the spatially explicit global land- and water-use allocation model MAgPIE to project the implications of this bioenergy target for global land and water resources. We find that producing 300 EJ yr(-1) of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented. Since current human water withdrawals are dominated by agriculture and already lead to ecosystem degradation and biodiversity loss, such a doubling will pose a severe threat to freshwater ecosystems. If irrigated bioenergy production is prohibited to prevent negative impacts of bioenergy cultivation on water resources, bioenergy land requirements for meeting a 300 EJ yr(-1) bioenergy target increase substantially (+ 41%) - mainly at the expense of pasture areas and tropical forests. Thus, avoiding negative environmental impacts of large-scale bioenergy production will require policies that balance associated water and land requirements.
引用
收藏
页码:11 / 24
页数:14
相关论文
共 86 条
  • [1] Development and testing of the WaterGAP 2 global model of water use and availability
    Alcamo, J
    Döll, P
    Henrichs, T
    Kaspar, F
    Lehner, B
    Rösch, T
    Siebert, S
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2003, 48 (03): : 317 - 337
  • [2] Assessing the impacts of livestock production on biodiversity in rangeland ecosystems
    Alkemade, Rob
    Reid, Robin S.
    van den Berg, Maurits
    de Leeuw, Jan
    Jeuken, Michel
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (52) : 20900 - 20905
  • [3] Angelsen A., 2009, Reducing Emissions from Deforestation and Forest Degradation (REDD): An Options Assessment Report
  • [4] [Anonymous], 2010, Country Report
  • [5] [Anonymous], 2015, MITIG ADAPT STRAT GL, DOI DOI 10.1007/s11027-013-9497-4
  • [6] The implications of climate policy for the impacts of climate change on global water resources
    Arnell, Nigel W.
    van Vuuren, Detlef P.
    Isaac, Morna
    [J]. GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2011, 21 (02): : 592 - 603
  • [7] Carbon capture and storage from fossil fuels and biomass -: Costs and potential role in stabilizing the atmosphere
    Azar, Christian
    Lindgren, Kristian
    Larson, Eric
    Moellersten, Kenneth
    [J]. CLIMATIC CHANGE, 2006, 74 (1-3) : 47 - 79
  • [8] Quantifying the biodiversity value of tropical primary, secondary, and plantation forests
    Barlow, J.
    Gardner, T. A.
    Araujo, I. S.
    Avila-Pires, T. C.
    Bonaldo, A. B.
    Costa, J. E.
    Esposito, M. C.
    Ferreira, L. V.
    Hawes, J.
    Hernandez, M. M.
    Hoogmoed, M. S.
    Leite, R. N.
    Lo-Man-Hung, N. F.
    Malcolm, J. R.
    Martins, M. B.
    Mestre, L. A. M.
    Miranda-Santos, R.
    Nunes-Gutjahr, A. L.
    Overal, W. L.
    Parry, L.
    Peters, S. L.
    Ribeiro-Junior, M. A.
    da Silva, M. N. F.
    Motta, C. da Silva
    Peres, C. A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) : 18555 - 18560
  • [9] Bioenergy production potential of global biomass plantations under environmental and agricultural constraints
    Beringer, Tim
    Lucht, Wolfgang
    Schaphoff, Sibyll
    [J]. GLOBAL CHANGE BIOLOGY BIOENERGY, 2011, 3 (04): : 299 - 312
  • [10] Bioenergy and water - the implications of large-scale bioenergy production for water use and supply
    Berndes, G
    [J]. GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2002, 12 (04): : 253 - 271