Exact packing measure of linear Cantor sets

被引:23
作者
Feng, DJ [1 ]
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Tsing Hua Univ, Ctr Adv Study, Beijing 100084, Peoples R China
关键词
packing measures; Hausdorff measures; Cantor sets;
D O I
10.1002/mana.200310006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be the attractor of a linear iterated function system S(j)x = rho(j)x+b(j) (j = 1,...,m) on the real line satisfying the open set condition (where the open set is an interval). It is well known that the packing dimension of K is equal to alpha, the unique positive solution y of the equation Sigma(j=1)(m) rho(j)(y) = 1; and the alpha-dimensional packing measure P-alpha(K) is finite and positive. Denote by y the unique self-similar measure for the IFS {S-j}(j=1)(m) with the probability weight {rho(j)(alpha)}(j=1)(m). In this paper, we prove that P-alpha(K) is equal to the reciprocal of the so-called "minimal centered density" of mu, and this yields an explicit formula of P-alpha(K) in terms of the parameters rho(j), b(j) (j = 1,...,m). Our result implies that P-alpha(K) depends continuously on the parameters whenever Sigma(j) rho(j) < 1.
引用
收藏
页码:102 / 109
页数:8
相关论文
共 15 条
[1]   Exact Hausdorff measure and intervals of maximum density for Cantor sets [J].
Ayer, E ;
Strichartz, RS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (09) :3725-3741
[3]  
Falconer K., 1997, Techniques in fractal geometry
[4]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2
[5]  
Falconer K. J., 1985, The geometry of fractal sets
[6]   ON BANDTS TANGENTIAL DISTRIBUTION FOR SELF-SIMILAR MEASURES [J].
GRAF, S .
MONATSHEFTE FUR MATHEMATIK, 1995, 120 (3-4) :223-246
[7]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[8]  
MARION J., 1986, Ann. Sc. Math. Quebec, V10, P51
[9]  
Mattila P., 1995, Fractals and rectifiability, volume 44 of Cambridge Studies in Advanced Mathematics, V44
[10]  
SAINT RX, 1988, MATH P CAMB PHIL SOC, V103, P133