AMALi - the Airborne Mobile Aerosol Lidar for Arctic research

被引:37
作者
Stachlewska, I. S. [1 ,2 ]
Neuber, R. [1 ]
Lampert, A. [1 ]
Ritter, C. [1 ]
Wehrle, G. [1 ,3 ]
机构
[1] Alfred Wegener Inst Polar & Marine Res, D-14473 Potsdam, Germany
[2] Univ Warsaw, Fac Phys, Inst Geophys, PL-02093 Warsaw, Poland
[3] Paul Scherrer Inst, Lab Atmospher Chem, CH-5232 Villigen, Switzerland
关键词
OPTICAL-PROPERTIES; DEPOLARIZATION RATIO; TROPOSPHERIC AEROSOL; EXTINCTION PROFILES; POLARIZATION LIDAR; BOUNDARY-LAYER; BACKSCATTER; RETRIEVAL; INVERSION; CLOUD;
D O I
10.5194/acp-10-2947-2010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Airborne Mobile Aerosol Lidar (AMALi) is an instrument developed at the Alfred Wegener Institute for Polar and Marine Research for reliable operation under the challenging weather conditions at the Earth's polar regions. Since 2003 the AMALi has been successfully deployed for measurements in ground-based installation and zenith- or nadir-pointing airborne configurations during several scientific campaigns in the Arctic. The lidar provides backscatter profiles at two wavelengths (355/532 nm or 1064/532 nm) together with the linear depolarization at 532 nm, from which aerosol and cloud properties can be derived. This paper presents the characteristics and capabilities of the AMALi system and gives examples of its usage for airborne and ground-based operations in the Arctic. As this backscatter lidar normally does not operate in aerosol-free layers special evaluation schemes are discussed, the nadir-pointing iterative inversion for the case of an unknown boundary condition and the two-stream approach for the extinction profile calculation if a second lidar system probes the same air mass. Also an intercomparison of the AMALi system with an established ground-based Koldewey Aerosol Raman Lidar (KARL) is given.
引用
收藏
页码:2947 / 2963
页数:17
相关论文
共 50 条
  • [1] The RAMNI airborne lidar for cloud and aerosol research
    Cairo, F.
    Di Donfrancesco, G.
    Di Liberto, L.
    Viterbini, M.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (07) : 1779 - 1792
  • [2] Nadir airborne lidar observations of deep aerosol layers
    Marenco, F.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (08) : 2055 - 2064
  • [3] Aerosol classification by airborne high spectral resolution lidar observations
    Gross, S.
    Esselborn, M.
    Weinzierl, B.
    Wirth, M.
    Fix, A.
    Petzold, A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (05) : 2487 - 2505
  • [4] Measurements of Aerosol Size and Microphysical Properties: A Comparison Between Raman Lidar and Airborne Sensors
    Di Girolamo, P.
    De Rosa, B.
    Summa, D.
    Franco, N.
    Veselovskii, I
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (14)
  • [5] Miniature aerosol lidar for automated airborne application
    Matthey, R
    Mitev, V
    Mileti, G
    Makarov, V
    Turin, A
    Morandi, M
    Santacesaria, V
    LASER RADAR TECHNOLOGY AND APPLICATIONS V, 2000, 4035 : 44 - 53
  • [6] Aerosol monitoring in Siberia using an 808 nm automatic compact lidar
    Ancellet, Gerard
    Penner, Iogannes E.
    Pelon, Jacques
    Mariage, Vincent
    Zabukovec, Antonin
    Raut, Jean Christophe
    Kokhanenko, Grigorii
    Balin, Yuri S.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (01) : 147 - 168
  • [7] Seasonal Variation of Dust Aerosol Vertical Distribution in Arctic Based on Polarized Micropulse Lidar Measurement
    Xie, Hailing
    Wang, Zhien
    Luo, Tao
    Yang, Kang
    Zhang, Damao
    Zhou, Tian
    Yang, Xueling
    Liu, Xiaohong
    Fu, Qiang
    REMOTE SENSING, 2022, 14 (21)
  • [8] Estimation of Aerosol Effective Radius by Multiwavelength Elastic Lidar
    Marchant, Christian C.
    Wojcik, Michael D.
    Bradford, William J.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (02): : 645 - 660
  • [9] Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples
    Burton, S. P.
    Ferrare, R. A.
    Hostetler, C. A.
    Hair, J. W.
    Rogers, R. R.
    Obland, M. D.
    Butler, C. F.
    Cook, A. L.
    Harper, D. B.
    Froyd, K. D.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (01) : 73 - 98
  • [10] The Detection of Desert Aerosol Incorporating Coherent Doppler Wind Lidar and Rayleigh-Mie-Raman Lidar
    Li, Manyi
    Xia, Haiyun
    Su, Lian
    Han, Haobin
    Wang, Xiaofei
    Yuan, Jinlong
    REMOTE SENSING, 2023, 15 (23)