Machine-learning-based quality-level-estimation system for inspecting steel microstructures

被引:5
|
作者
Nishiura, Hiromi [1 ]
Miyamoto, Atsushi [1 ]
Ito, Akira [1 ]
Harada, Minoru [1 ]
Suzuki, Shogo [2 ]
Fujii, Kouhei [2 ]
Morifuji, Hiroshi [2 ]
Takatsuka, Hiroyuki [2 ]
机构
[1] Hitachi Ltd, Res & Dev Grp, Totsuka Ku, 292 Yoshida Cho, Yokohama, Kanagawa 2440817, Japan
[2] Hitachi Met Ltd, Corp Qual Assurance Div, 1240-2 Hashima Cho, Yasugi, Shimane 6920014, Japan
关键词
steel microstructures; visual inspection; machine learning; overfitting; data augmentation; CNN; GRADIENT;
D O I
10.1093/jmicro/dfac019
中图分类号
TH742 [显微镜];
学科分类号
摘要
Quality control of special steel is accomplished through visual inspection of its microstructure based on microscopic images. This study proposes an 'automatic-quality-level-estimation system' based on machine learning. Visual inspection of this type is sensory-based, so training data may include variations in judgments and training errors due to individual differences between inspectors, which makes it easy for a drop in generalization performance to occur due to overfitting. To deal with this issue, we here propose the preprocessing of inspection images and a data augmentation technique. Preprocessing reduces variation in images by extracting features that are highly related to the level of quality from inspection images. Data augmentation, meanwhile, suppresses the problem of overfitting when training with a small number of images by taking into account information on variation in judgment values obtained from on-site experience. While the correct-answer rate for judging the quality level by an inspector was about 90%, the proposed method achieved a correct-answer rate of 92.5%, which indicates that the method shows promise for practical applications.
引用
收藏
页码:214 / 221
页数:8
相关论文
共 50 条
  • [31] piRNA in Machine-Learning-Based Diagnostics of Colorectal Cancer
    Li, Sienna
    Kouznetsova, Valentina L.
    Kesari, Santosh
    Tsigelny, Igor F.
    MOLECULES, 2024, 29 (18):
  • [32] Fast Affine Motion Estimation for VVC using Machine-Learning-Based Early Search Termination
    Duarte, Adson
    Goncalves, Paulo
    Agostini, Luciano
    Zatt, Bruno
    Correa, Guilherme
    Porto, Marcelo
    Palomino, Daniel
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1958 - 1962
  • [33] A Machine-Learning-Based Channel Assignment Algorithm for IoT
    Ma, Jing
    Nagatsuma, Tomoya
    Kim, Song-Ju
    Hasegawa, Mikio
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 467 - 472
  • [34] Machine-learning-based classification of Glioblastoma in multiparametric MRI
    Cui, Ge
    Jeong, Jiwoong Jason
    Lei, Yang
    Wang, Tonghe
    Liu, Tian
    Curran, Walter J.
    Mao, Hui
    Yang, Xiaofeng
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [35] Machine-Learning-Based Device for Visually Impaired Person
    Priya, Tuhina
    Sravya, Kotla Sai
    Umamaheswari, S.
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, 2020, 1056 : 79 - 88
  • [36] Machine-learning-based pressure reconstruction with moving boundaries
    Wang, Hongping
    Wu, Fan
    Liu, Yi
    He, Xinyi
    Feng, Shuyi
    Wang, Shizhao
    JOURNAL OF FLUID MECHANICS, 2025, 1008
  • [37] A MACHINE-LEARNING-BASED ALGORITHM FOR DETECTING A MOVING OBJECT
    Zhu, Anmin
    Chen, Yanming
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2016, 31 (05) : 402 - 408
  • [38] Machine-Learning-Based Statistical Arbitrage Football Betting
    Knoll, Julian
    Stuebinger, Johannes
    KUNSTLICHE INTELLIGENZ, 2020, 34 (01): : 69 - 80
  • [39] Machine-Learning-Based Column Selection for Column Generation
    Morabit, Mouad
    Desaulniers, Guy
    Lodi, Andrea
    TRANSPORTATION SCIENCE, 2021, 55 (04) : 815 - 831
  • [40] A Machine-Learning-Based Framework for Productive Locality Exploitation
    Kayraklioglu, Engin
    Favry, Erwan
    El-Ghazawi, Tarek
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (06) : 1409 - 1424