Broadband and multilayer core-shell FeCo@C@mSiO2 nanoparticles for microwave absorption

被引:49
作者
Ding, Ling [1 ]
Huang, Ying [1 ]
Liu, Xudong [1 ]
Xu, Zhipeng [1 ]
Li, Suping [1 ]
Yan, Jing [1 ]
Liu, Panbo [1 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, Minist Educ, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesoporous silica; Microwave absorption; Core-shell structure; Nanocomposites; HIERARCHICAL NANOSTRUCTURES; CARBON NANOTUBES; GRAPHENE; PERFORMANCE; MICROSPHERES; NANOCOMPOSITES; CONSTRUCTION; FECO; FABRICATION; LIGHTWEIGHT;
D O I
10.1016/j.jallcom.2019.152168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The core-shell composite of FeCo alloy coated with amorphous carbon and mesoporous silica (mSiO(2) for short) has been successfully fabricated through liquid-phase reduction, hydrothermal reaction as well as high temperature calcination, forming nanoparticles around 400 nm in size. The alloy core provides strong magnetic loss and keeps stable under the protection of the shell, while the carbon shell reduces density and promotes dielectric loss. The outer layer of mSiO(2) provides a larger specific surface area for multiple reflections, and meanwhile effectively adjusting the impedance matching, resulting in a better absorption. With a thickness of 3.5 mm, the maximum R-L of the composite reaches -46.79 dB at 11.84 GHz, and the effective absorption bandwidth with the R-L below -10 dB is up to 8.8 GHz (from 9.2 to 18.0 GHz). Hence, FeCo@C@mSiO(2) composite is potential to become an excellent candidate in the field of microwave absorption. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 49 条
[21]   Electron Holography of Yolk-Shell Fe3O4@mSiO2 Microspheres for Use in Microwave Absorption [J].
Liu, Jiwei ;
You, Wenbin ;
Yu, Jieyi ;
Liu, Xianguo ;
Zhang, Xuefeng ;
Guo, Junjie ;
Che, Renchao .
ACS APPLIED NANO MATERIALS, 2019, 2 (02) :910-916
[22]   Core-Shell CoNi@Graphitic Carbon Decorated on B,N-Codoped Hollow Carbon Polyhedrons toward Lightweight and High-Efficiency Microwave Attenuation [J].
Liu, Panbo ;
Gao, Sai ;
Wang, Yang ;
Huang, Ying ;
Wang, Yan ;
Luo, Juhua .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (28) :25624-25635
[23]   Recent advancements of polyaniline-based nanocomposites for supercapacitors [J].
Liu, Panbo ;
Yan, Jing ;
Guang, Zhaoxu ;
Huang, Ying ;
Li, Xifei ;
Huang, Wenhuan .
JOURNAL OF POWER SOURCES, 2019, 424 :108-130
[24]   Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption [J].
Liu, Panbo ;
Zhang, Yiqing ;
Yan, Jing ;
Huang, Ying ;
Xia, Long ;
Guang, Zhaoxu .
CHEMICAL ENGINEERING JOURNAL, 2019, 368 :285-298
[25]   Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties [J].
Liu, Panbo ;
Huang, Ying ;
Yan, Jing ;
Yang, Yiwen ;
Zhao, Yang .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (08) :5536-5546
[26]   CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption [J].
Liu, Qinghe ;
Cao, Qi ;
Bi, Han ;
Liang, Chongyun ;
Yuan, Kaiping ;
She, Wen ;
Yang, Yongji ;
Che, Renchao .
ADVANCED MATERIALS, 2016, 28 (03) :486-+
[27]   Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride [J].
Liu, Xiaofang ;
Chen, Yaxin ;
Cui, Xinrui ;
Zeng, Min ;
Yu, Ronghai ;
Wang, Guang-Sheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (23) :12197-12204
[28]   Fabrication of carbon-doped ZnCo2O4 yolk-shell microspheres compounded with magnetic graphene for enhanced electromagnetic wave absorption performance [J].
Liu, Xudong ;
Huang, Ying ;
Zhang, Na ;
Zhang, Zheng ;
Yan, Jing ;
Zong, Meng ;
Liu, Panbo .
CERAMICS INTERNATIONAL, 2019, 45 (16) :19720-19729
[29]   Effect of surface modified SiO2 powders on microwave absorbing properties of flaky FeSiAl coatings [J].
Ma, Guojia ;
Duan, Yuping ;
Liu, Yi ;
Gao, Shaohua .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (20) :17405-17415
[30]  
Smith E, 2005, MODERN RAMAN SPECTROSCOPY: A PRACTICAL APPROACH, P1