Broadband and multilayer core-shell FeCo@C@mSiO2 nanoparticles for microwave absorption

被引:44
|
作者
Ding, Ling [1 ]
Huang, Ying [1 ]
Liu, Xudong [1 ]
Xu, Zhipeng [1 ]
Li, Suping [1 ]
Yan, Jing [1 ]
Liu, Panbo [1 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, Minist Educ, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesoporous silica; Microwave absorption; Core-shell structure; Nanocomposites; HIERARCHICAL NANOSTRUCTURES; CARBON NANOTUBES; GRAPHENE; PERFORMANCE; MICROSPHERES; NANOCOMPOSITES; CONSTRUCTION; FECO; FABRICATION; LIGHTWEIGHT;
D O I
10.1016/j.jallcom.2019.152168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The core-shell composite of FeCo alloy coated with amorphous carbon and mesoporous silica (mSiO(2) for short) has been successfully fabricated through liquid-phase reduction, hydrothermal reaction as well as high temperature calcination, forming nanoparticles around 400 nm in size. The alloy core provides strong magnetic loss and keeps stable under the protection of the shell, while the carbon shell reduces density and promotes dielectric loss. The outer layer of mSiO(2) provides a larger specific surface area for multiple reflections, and meanwhile effectively adjusting the impedance matching, resulting in a better absorption. With a thickness of 3.5 mm, the maximum R-L of the composite reaches -46.79 dB at 11.84 GHz, and the effective absorption bandwidth with the R-L below -10 dB is up to 8.8 GHz (from 9.2 to 18.0 GHz). Hence, FeCo@C@mSiO(2) composite is potential to become an excellent candidate in the field of microwave absorption. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Enhanced Microwave Absorption Properties of FeCo@TiO2 Core-Shell Nanoparticles
    Gharaati, Abdolrasoul
    Ebrahimzadeh, Majid
    CURRENT NANOSCIENCE, 2019, 15 (02) : 163 - 168
  • [2] Facile synthesis and excellent microwave absorption properties of FeCo-C core-shell nanoparticles
    Liang, Bingbing
    Wang, Shiliang
    Kuang, Daitao
    Hou, Lizhen
    Yu, Bowen
    Lin, Liangwu
    Deng, Lianwen
    Huang, Han
    He, Jun
    NANOTECHNOLOGY, 2018, 29 (08)
  • [3] Enhanced broadband microwave absorption of Fe/C core-shell nanofibers in X and Ku bands
    Dong, Shixiang
    Li, Jing
    Li, Ning
    Zhang, Shuai
    Li, Bo
    Zhang, Qianli
    Ge, Liqin
    CERAMICS INTERNATIONAL, 2023, 49 (05) : 8181 - 8189
  • [4] Synthesis and Investigations on Microwave Absorption Properties of Core-Shell FeCo(C) Alloy Nanoparticles
    Gupta, Vatsana
    Patra, Manoj K.
    Shukla, Anuj
    Saini, Lokesh
    Songara, Sandhya
    Jani, Rajkumar
    Vadera, Sampat R.
    Kumar, Narendra
    SCIENCE OF ADVANCED MATERIALS, 2014, 6 (06) : 1196 - 1202
  • [5] Core-Shell Structured SiO2@NiFe LDH Composite for Broadband Electromagnetic Wave Absorption
    Du, Zhilan
    Wang, Dashuang
    Zhang, Xinfang
    Yi, Zhiyu
    Tang, Jihai
    Yang, Pingan
    Cai, Rui
    Yi, Shuang
    Rao, Jinsong
    Zhang, Yuxin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (01)
  • [6] Improved microwave absorbing properties of core-shell FeCo@C nanoparticles
    Tan, Qiulan
    Tao, Li
    Rehman, Sajjad Ur
    Zhong, Minglong
    Wang, Lei
    Chen, Changcai
    Xiong, Houdong
    Xie, Weicheng
    Zhong, Zhenchen
    MATERIALS RESEARCH EXPRESS, 2019, 6 (07):
  • [7] Compositional and morphological design of hierarchical Co2Y@MnO2@CNTs core-shell microflowers for broadband microwave absorption application
    He, Li
    Li, Xun
    Dai, Ruochen
    Zhong, ZuTing
    Zhao, Yuchen
    Yang, Ying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 869
  • [8] Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles
    Kuang, Daitao
    Hou, Lizhen
    Wang, Shiliang
    Luo, Heng
    Deng, Lianwen
    Mead, James L.
    Huang, Han
    Song, Min
    CARBON, 2019, 153 : 52 - 61
  • [9] Preparation and microwave absorption properties of the hollow ZnFe2O4@C composites with core-shell structure
    Huang, Yong
    Xing, Wenjia
    Fan, Junlong
    Dai, Jingxiong
    Liu, Qi
    Hu, Fei
    Xu, Guangliang
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 502
  • [10] Ultra-broadband and covalently linked core-shell CoFe2O4@PPy nanoparticles with reduced graphene oxide for microwave absorption
    Ding, Ling
    Zhao, Xiaoxiao
    Huang, Ying
    Yan, Jing
    Li, Tiehu
    Liu, Panbo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 595 : 168 - 177