The influences of meso-phenyl substitution on the geometric structure and vibrational spectra have been studied by DFT calculation (ULYP/6-31G(d)) and experiment on a series of zinc porphyrins (ZnTPP: zinc 5,10,15,20-tetraphenylporphyrin; ZnTrPP: zinc 5,10,15-triphenylporphryin; ZnDPP: zinc 5,15-dipenylporphyirn; ZnMPP: zinc 5-monophenylporphyrin; ZnP: zinc porphine). Calculation indicates that meso-phenyl substitution gives rise to slight out-of-plane distortion but significant in-plane distortion, especially for the configuration around C-m atom, to zinc porphyrin. The assignment of experimental vibrational spectra was proposed mainly on the basis of calculation. Different shifting tendency upon meso-phenyl substitution is observed for different structure-sensitive bands, such as the shifting of nu(2), nu(3), nu(6), and nu(8) modes toward higher frequencies and nu(4) and nu(28) modes toward lower frequencies, upon meso-phenyl substitution. This is attributed primarily to in-plane nuclear reorganization effect (IPNR), though the contribution from out-of-plane distortion cannot be excluded completely. Analysis on vibrational structure reveals that asymmetric meso-phenyl substitution, especially the 5,15-diphenyl substitution of ZnDPP, brings about asymmetric vibrational displacement, or even splitting of vibrational structure to normal modes involving mainly the motion of meso-C-m,. This is ascribed to the reduction of symmetry of porphyrin skeleton caused by asymmetric meso-phenyl substitution. (C) 2009 Elsevier B.V. All rights reserved.