Low-Reynolds-number, biflagellated Quincke swimmers with multiple forms of motion

被引:18
|
作者
Han, Endao [1 ]
Zhu, Lailai [2 ]
Shaevitz, Joshua W. [1 ,3 ]
Stone, Howard A. [4 ]
机构
[1] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA
[2] Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore
[3] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
关键词
low-Reynolds-number swimmer; Quincke rotation; motility; ELECTRIC-FIELD; ROTATION; DRIVEN;
D O I
10.1073/pnas.2022000118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the limit of zero Reynolds number (Re), swimmers propel themselves exploiting a series of nonreciprocal body motions. For an artificial swimmer, a proper selection of the power source is required to drive its motion, in cooperation with its geometric and mechanical properties. Although various external fields (magnetic, acoustic, optical, etc.) have been introduced, electric fields are rarely utilized to actuate such swimmers experimentally in unbounded space. Here we use uniform and static electric fields to demonstrate locomotion of a biflagellated sphere at low Re via Quincke rotation. These Quincke swimmers exhibit three different forms of motion, including a self-oscillatory state due to elastohydrodynamic-electrohydrodynamic interactions. Each form of motion follows a distinct trajectory in space. Our experiments and numerical results demonstrate a method to generate, and potentially control, the locomotion of artificial flagellated swimmers.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Scattering of low-Reynolds-number swimmers
    Alexander, G. P.
    Pooley, C. M.
    Yeomans, J. M.
    PHYSICAL REVIEW E, 2008, 78 (04):
  • [2] Low-Reynolds-number droplet motion in a square microfluidic channel
    Yechun Wang
    Panagiotis Dimitrakopoulos
    Theoretical and Computational Fluid Dynamics, 2012, 26 : 361 - 379
  • [3] Low-Reynolds-number droplet motion in a square microfluidic channel
    Wang, Yechun
    Dimitrakopoulos, Panagiotis
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2012, 26 (1-4) : 361 - 379
  • [4] Low-Reynolds-number predator
    Ebrahimian, Mehran
    Yekehzare, Mohammad
    Ejtehadi, Mohammad Reza
    PHYSICAL REVIEW E, 2015, 92 (06):
  • [5] LOW-REYNOLDS-NUMBER AIRFOILS
    LISSAMAN, PBS
    ANNUAL REVIEW OF FLUID MECHANICS, 1983, 15 : 223 - 239
  • [6] A BIBLIOGRAPHICAL NOTE ON THE UNSTEADY MOTION OF A SPHERICAL DROP AT LOW-REYNOLDS-NUMBER
    POZRIKIDIS, C
    PHYSICS OF FLUIDS, 1994, 6 (09) : 3209 - 3209
  • [7] A FLUID DYNAMICS STUDY OF A MODIFIED LOW-REYNOLDS-NUMBER FLAPPING MOTION
    Amiralaei, M. R.
    Alighanbari, H.
    Hashemi, S. M.
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE - 2010 - VOL 1, PTS A-C, 2010, : 201 - 206
  • [8] Low-Reynolds-number swimming at pycnoclines
    Doostmohammadi, Amin
    Stocker, Roman
    Ardekani, Arezoo M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (10) : 3856 - 3861
  • [9] Low-Reynolds-number fountain behaviour
    Williamson, N.
    Srinarayana, N.
    Armfield, S. W.
    Mcbain, G. D.
    Lin, W.
    JOURNAL OF FLUID MECHANICS, 2008, 608 : 297 - 317
  • [10] Low-Reynolds-number swimming in gels
    Fu, Henry C.
    Shenoy, Vivek B.
    Powers, Thomas R.
    EPL, 2010, 91 (02)