LORENTZ ESTIMATES FOR ASYMPTOTICALLY REGULAR ELLIPTIC EQUATIONS IN QUASICONVEX DOMAINS

被引:0
作者
Zhang, Junjie [1 ]
Zheng, Shenzhou [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
关键词
Lorentz estimate; Poisson kernel; Lorentz space; regularity; CALDERON-ZYGMUND THEORY; REIFENBERG DOMAINS; PARABOLIC EQUATIONS; GLOBAL REGULARITY; OBSTACLE PROBLEMS; NONLINEARITIES; COEFFICIENTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a global Lorentz estimate of the gradient of weak solutions to nonlinear elliptic problems with asymptotically regular nonlinearity in quasiconvex domains. Here, we prove its Lorentz estimate for such an asymptotically regular elliptic problem by constructing a regular problem via Poisson's formula, and quasiconvex domain locally approximated by convex domain.
引用
收藏
页数:13
相关论文
共 25 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]   Global Lorentz and Lorentz-Morrey estimates below the natural exponent for quasilinear equations [J].
Adimurthi, Karthik ;
Nguyen Cong Phuc .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :3107-3139
[3]   Marcinkiewicz estimates for degenerate parabolic equations with measure data [J].
Baroni, Paolo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (09) :3397-3426
[4]   Lorentz estimates for obstacle parabolic problems [J].
Baroni, Paolo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 96 :167-188
[5]   Lorentz estimates for degenerate and singular evolutionary systems [J].
Baroni, Paolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (09) :2927-2951
[6]   Elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, SS ;
Wang, LH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) :1283-1310
[7]   Elliptic equations with BMO nonlinearity in Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe .
ADVANCES IN MATHEMATICS, 2008, 219 (06) :1937-1971
[8]   Global Calderon-Zygmund Theory for Asymptotically Regular Nonlinear Elliptic and Parabolic Equations [J].
Byun, Sun-Sig ;
Oh, Jehan ;
Wang, Lihe .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (17) :8289-8308
[9]   Nonlinear gradient estimates for elliptic equations in quasiconvex domains [J].
Byun, Sun-Sig ;
Kwon, Hun ;
So, Hyoungsuk ;
Wang, Lihe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) :1425-1453
[10]   Global Calderon-Zygmund theory for nonlinear elliptic obstacle problems with asymptotically regular nonlinearities [J].
Byun, Sun-Sig ;
Cho, Yumi ;
Oh, Jehan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 123-124 :150-157