Stabilizing infrared quantum cascade laser beams for standoff detection applications

被引:1
|
作者
Breshike, Christopher J. [1 ]
Kendziora, Christopher A. [1 ]
Furstenberg, Robert [1 ]
Nguyen, Viet [1 ]
McGill, R. Andrew [1 ]
机构
[1] Naval Res Lab, Code 6365,4555 Overlook Ave SW, Washington, DC 20375 USA
来源
QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XIV | 2017年 / 10111卷
关键词
standoff detection; infrared spectroscopy; quantum cascade laser; infrared imaging; active beam stabilization; infrared fibers; photo-thermal;
D O I
10.1117/12.2251592
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We are developing a technology for standoff detection of chemicals on surfaces based on active broadband infrared imaging spectroscopy. This approach leverages one or more IR quantum cascade lasers (QCL), tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface response upon laser illumination. The broadband IR signal is processed as a hyperspectral image cube comprised of spatial, spectral and temporal dimensions as vectors within a detection algorithm. Such standoff spectroscopic imaging applications place stringent stability requirements on the wavelength, power, pulse width and spatial beam profile that pose a challenge for broadly tunable IR QCL. In this manuscript, we discuss methods to mitigate these challenges, including extensive calibration and active feedback stabilization. These mitigation methods should benefit many applications of IR QCL, including those for standoff detection, spectroscopy and imaging.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Approach of high-speed glucose detection using quantum cascade laser-based mid-infrared spectroscopy
    Chen, Junyi
    Furukawa, Hiromitsu
    OPTICAL DIAGNOSTICS AND SENSING XXIV:TOWARD POINT-OF-CARE DIAGNOSTICS, 2024, 12850
  • [32] Standoff Imaging of Trace RDX Using Quantum Cascade Lasers
    Datskos, Panos G.
    Morales-Rodriguez, Marissa E.
    Senesac, Larry R.
    IEEE SENSORS JOURNAL, 2020, 20 (01) : 149 - 154
  • [33] Design of an analyzer based on a quantum cascade laser for substance identification by infrared reflected radiation
    Anfimov, Dmitriy R.
    Fufurin, Igor L.
    Golyak, Igor S.
    Morozov, Andrey N.
    INTEGRATED OPTICS: DESIGN, DEVICES, SYSTEMS AND APPLICATIONS VI, 2021, 11775
  • [34] Causality relations in analysis of diffuse reflectance spectra obtained by infrared quantum cascade laser
    Fufurin, I. L.
    Tabalina, A. S.
    Morozov, A. N.
    Golyak, Ig S.
    Svetlichnyi, S., I
    2019 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: IRMMW-THZ TECHNOLOGIES AND APPLICATIONS, 2020, 11441
  • [35] Photoacoustic detection of ozone using a quantum cascade laser
    M.G. da Silva
    H. Vargas
    A. Miklós
    P. Hess
    Applied Physics B, 2004, 78 : 677 - 680
  • [36] Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications
    Patimisco, Pietro
    Spagnolo, Vincenzo
    Vitiello, Miriam S.
    Scamarcio, Gaetano
    Bledt, Carlos M.
    Harrington, James A.
    SENSORS, 2013, 13 (01) : 1329 - 1340
  • [37] Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry
    Macleod, Neil A.
    Molero, Francisco
    Weidmann, Damien
    OPTICS EXPRESS, 2015, 23 (02): : 912 - 928
  • [38] Recent advances in quantum cascade laser research and novel applications
    Hofstetter, D
    Beck, M
    Blaser, S
    Aellen, T
    Faist, J
    Oesterle, U
    Ilegems, M
    Gini, E
    Melchior, H
    NOVEL IN-PLANE SEMICONDUCTOR LASERS II, 2003, 4995 : 1 - 9
  • [39] Standoff Chemical Detection Using Laser Absorption Spectroscopy: A Review
    Li, Jinyi
    Yu, Ziwei
    Du, Zhenhui
    Ji, Yue
    Liu, Chang
    REMOTE SENSING, 2020, 12 (17) : 1 - 44
  • [40] Mid-infrared femtosecond pulses from a quantum cascade laser
    Taeschler, P.
    Bertrand, M.
    Schneider, B.
    Singleton, M.
    Jouy, P.
    Kapsalidis, F.
    Beck, M.
    Faist, J.
    FRONTIERS IN ULTRAFAST OPTICS: BIOMEDICAL, SCIENTIFIC, AND INDUSTRIAL APPLICATIONS XXII, 2022, 11991