Stabilization of stochastic recurrent neural networks via inverse optimal control

被引:0
作者
Sanchez, EN [1 ]
Perez, JP [1 ]
Chen, GR [1 ]
机构
[1] CINVESTAV, Unidad Guadalajara, Guadalajara 45091, Jalisco, Mexico
来源
PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4 | 2002年
关键词
neural networks; nonlinear systems; stochastic systems; inverse optimal control; Lyapunov function;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper studies the stabilization problem for a dynamic neural network disturbed by additive noise. The stabilization is achieved from the inverse optimal control approach, recently introduced in nonlinear control theory, using a quadratic Lyapunov function. A simple feedback control law is derived, which ensures that the neural network state is globally asymptotically stable in probability.
引用
收藏
页码:1762 / 1763
页数:2
相关论文
共 4 条
[1]   Noisy recurrent neural networks: The continuous-time case [J].
Das, S ;
Olurotimi, O .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (05) :913-936
[2]   NECESSARY AND SUFFICIENT CONDITION FOR ABSOLUTE STABILITY OF NEURAL NETWORKS [J].
FORTI, M ;
MANETTI, S ;
MARINI, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1994, 41 (07) :491-494
[3]  
Krstic Miroslav., 1998, Stabilization of nonlinear uncertain systems, V1st
[4]   Input-to-state stability (ISS) analysis for dynamic neural networks [J].
Sanchez, EN ;
Perez, JP .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (11) :1395-1398