Advances and Challenges in De Novo Drug Design Using Three-Dimensional Deep Generative Models

被引:35
作者
Xie, Weixin [1 ]
Wang, Fanhao [1 ]
Li, Yibo [2 ]
Lai, Luhua [1 ,3 ]
Pei, Jianfeng [1 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Quantitat Biol, Beijing 100871, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Life Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Coll Chem & Mol Engn, Peking Tsinghua Ctr Life Sci BNLMS, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
de novo drug design; deep learning; generative model; three-dimentional generation; structure-based generation; structure-based drug design; INFORMATION;
D O I
10.1021/acs.jcim.2c00042
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
A persistent goal forde novodrug design is togenerate novel chemical compounds with desirable properties in alabor-, time-, and cost-efficient manner. Deep generative modelsprovide alternative routes to this goal. Numerous modelarchitectures and optimization strategies have been explored inrecent years, most of which have been developed to generate two-dimensional molecular structures. Some generative models aimingat three-dimensional (3D) molecule generation have also beenproposed, gaining attention for their unique advantages andpotential to directly design drug-like molecules in a target-conditioning manner. This review highlights current developmentsin 3D molecular generative models combined with deep learningand discusses future directions forde novodrug design.
引用
收藏
页码:2269 / 2279
页数:11
相关论文
共 61 条
[1]   Guidelines for Recurrent Neural Network Transfer Learning-Based Molecular Generation of Focused Libraries [J].
Amabilino, Silvia ;
Pogany, Peter ;
Pickett, Stephen D. ;
Green, Darren V. S. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5699-5713
[2]  
[Anonymous], 2017, Molecular Generation with Recurrent Neural Networks (RNNs)
[3]   REINVENT 2.0: An AI Tool for De Novo Drug Design [J].
Blaschke, Thomas ;
Arus-Pous, Josep ;
Chen, Hongming ;
Margreitter, Christian ;
Tyrchan, Christian ;
Engkvist, Ola ;
Papadopoulos, Kostas ;
Patronov, Atanas .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5918-5922
[4]   GuacaMol: Benchmarking Models for de Novo Molecular Design [J].
Brown, Nathan ;
Fiscato, Marco ;
Segler, Marwin H. S. ;
Vaucher, Alain C. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) :1096-1108
[5]   sc-PDB: a 3D-database of ligandable binding sites-10 years on [J].
Desaphy, Jeremy ;
Bret, Guillaume ;
Rognan, Didier ;
Kellenberger, Esther .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D399-D404
[6]   MathDL: mathematical deep learning for D3R Grand Challenge 4 [J].
Duc Duy Nguyen ;
Gao, Kaifu ;
Wang, Menglun ;
Wei, Guo-Wei .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) :131-147
[7]   The Synthesizability of Molecules Proposed by Generative Models [J].
Gao, Wenhao ;
Coley, Connor W. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5714-5723
[8]  
Garcia Satorras V., 2022, ARXIV MACHINE LEARNI
[9]  
Gebauer N. W., 2020, ARXIV MACHINE LEARNI
[10]  
Gebauer N. W., 2018, ARXIV MACHINE LEARNI