Homotopy approach for the hyperchaotic Chen system

被引:19
作者
Alomari, A. K. [1 ]
Noorani, M. S. M. [2 ]
Nazar, R. [2 ]
机构
[1] Jerash Private Univ, Fac Nursing & Sci, Dept Sci, Jerash 26150, Jordan
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor, Malaysia
关键词
EQUATION; SYNCHRONIZATION; SOLVE;
D O I
10.1088/0031-8949/81/04/045005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the numerical-analytical solution for the hyperchaotic Chen system is obtained via the multistage homotopy analysis method (MSHAM). An analytical form of the solution within each time interval is given, which is not possible using standard numerical methods. The numerical results obtained by the MSHAM and the classical fourth-order Runge-Kutta (RK4) method are in complete agreement. Moreover, the residual error for the MSHAM solution is given for each time interval.
引用
收藏
页数:7
相关论文
共 21 条
[1]   The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation [J].
Abbasbandy, S. .
PHYSICS LETTERS A, 2007, 361 (06) :478-483
[2]   NUMERICAL EXPERIMENTS ON THE HYPERCHAOTIC CHEN SYSTEM BY THE ADOMIAN DECOMPOSITION METHOD [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. ;
Hashim, I. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2008, 5 (03) :403-412
[3]   On accuracy of Adomian decomposition method for hyperchaotic Rossler system [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. ;
Hashim, I. .
CHAOS SOLITONS & FRACTALS, 2009, 40 (04) :1801-1807
[4]   Application of the differential transformation method for the solution of the hyperchaotic Rossler system [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1509-1514
[5]   Solutions of heat-like and wave-like equations with variable coefficients by means of the homotopy analysis method [J].
Alomari, A. K. ;
Noorani, M. S. M. ;
Nazar, R. .
CHINESE PHYSICS LETTERS, 2008, 25 (02) :589-592
[6]   On the homotopy analysis method for the exact solutions of Helmholtz equation [J].
Alomari, A. K. ;
Noorani, M. S. M. ;
Nazar, R. .
CHAOS SOLITONS & FRACTALS, 2009, 41 (04) :1873-1879
[7]   Adaptation of homotopy analysis method for the numeric-analytic solution of Chen system [J].
Alomari, A. K. ;
Noorani, M. S. M. ;
Nazar, R. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :2336-2346
[8]   Approximate analytical solutions of systems of PDEs by homotopy analysis method [J].
Bataineh, A. Sami ;
Noorani, M. S. M. ;
Hashim, I. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (12) :2913-2923
[9]   On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder [J].
Hayat, T. ;
Sajid, M. .
PHYSICS LETTERS A, 2007, 361 (4-5) :316-322
[10]   Homotopy solutions for a generalized second-grade fluid past a porous plate [J].
Hayat, T ;
Khan, M .
NONLINEAR DYNAMICS, 2005, 42 (04) :395-405