TRANSLATING SOLUTIONS TO THE GAUSS CURVATURE FLOW WITH FLAT SIDES

被引:9
|
作者
Choi, Kyeongsu [1 ,2 ]
Daskalopoulos, Panagiota [3 ]
Lee, Ki-Ahm [2 ,4 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Korea Inst Adv Study, Seoul, South Korea
[3] Columbia Univ, Dept Math, New York, NY 10027 USA
[4] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
来源
ANALYSIS & PDE | 2021年 / 14卷 / 02期
关键词
Gauss curvature flow; translator; regularity; free boundary; CONVEX HYPERSURFACES; REGULARITY; POWERS;
D O I
10.2140/apde.2021.14.595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive local C-2 estimates for complete noncompact translating solitons of the Gauss curvature flow in R-3 which are graphs over a convex domain Omega. This is closely is related to deriving local C-1,C-1 estimates for the degenerate Monge-Ampere equation. As a result, given a weakly convex bounded domain Omega, we establish the existence of a C-loc(1,1) translating soliton. In particular, when the boundary a partial derivative Omega has line segments, we show the existence of flat sides of the translator from a local a priori nondegeneracy estimate near the free boundary.
引用
收藏
页码:595 / 616
页数:22
相关论文
共 50 条