Generalized Newton Raphson's method free from second derivative

被引:11
作者
Nazeer, Waqas [1 ]
Naseem, Amir [2 ]
Kang, Shin Min [3 ,4 ]
Kwun, Young Chel [5 ]
机构
[1] Univ Educ, Div Sci & Technol, Lahore 54000, Pakistan
[2] Lahore Leads Univ, Dept Math, Lahore 54810, Pakistan
[3] Gyeongsang Natl Univ, Dept Math, Jinju 52828, South Korea
[4] Gyeongsang Natl Univ, RINS, Jinju 52828, South Korea
[5] Dong A Univ, Dept Math, Busan 49315, South Korea
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 05期
关键词
Nonlinear equations; Newton's method; generalized Newton Raphson's method; Halley's method; VARIATIONAL ITERATION METHOD; HALLEY;
D O I
10.22436/jnsa.009.05.77
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggest and analyze two new iterative methods for solving nonlinear scalar equations namely: the modified generalized Newton Raphson's method and generalized Newton Raphson's method free from second derivative are having convergence of order six and five respectively. We also give several examples to illustrate the efficiency of these methods. (C) 2016 All rights reserved.
引用
收藏
页码:2823 / 2831
页数:9
相关论文
共 50 条
  • [21] On Newton's method for solving generalized equations
    Ferreira O.P.
    Jean-Alexis C.
    Piétrus A.
    Silva G.N.
    Journal of Complexity, 2023, 74
  • [22] Generalized differentiability conditions for Newton's method
    Ezquerro, JA
    Hernández, MA
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (02) : 187 - 205
  • [23] Newton's method on generalized Banach spaces
    Argyros, Ioannis K.
    Behl, Ramandeep
    Motsa, S. S.
    JOURNAL OF COMPLEXITY, 2016, 35 : 16 - 28
  • [24] On Newton's method under Holder continuous derivative
    Zhengda, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (02) : 332 - 339
  • [25] Convergence properties of the Newton-Raphson method for nonlinear problems
    Janicke, L
    Kost, A
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2505 - 2508
  • [26] Derivative free Newton-type method for fuzzy nonlinear equations
    Aal, Mohammad Abdel
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 34 (03): : 234 - 242
  • [27] CONVERGENCE OF NONSMOOTH VERSION OF NEWTON'S METHOD FOR GENERALIZED
    Zhang, Yan
    Wang, Jinhua
    Guu, Sy-Ming
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (05) : 865 - 878
  • [28] Semilocal convergence theorems for Newton's method using outer inverses and hypotheses on the second Frechet-derivative
    Argyros, IK
    MONATSHEFTE FUR MATHEMATIK, 2001, 132 (03): : 183 - 195
  • [29] Generalized Newton's method based on graphical derivatives
    Hoheisel, T.
    Kanzow, C.
    Mordukhovich, B. S.
    Phan, H.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1324 - 1340
  • [30] Newton's method for fully parameterized generalized equations
    Ouyang, Wei
    Zhang, Binbin
    OPTIMIZATION, 2018, 67 (11) : 2061 - 2080