Research on a Piezoelectric Energy Harvester with Rotating Magnetic Excitation

被引:18
作者
Wang, Zhe [1 ]
He, Lipeng [1 ]
Zhang, Zheng [1 ]
Zhou, Ziming [1 ]
Zhou, Jianwen [1 ]
Cheng, Guangming [2 ]
机构
[1] Changchun Univ Technol, Sch Mechatron Engn, Jilin, Jilin, Peoples R China
[2] Zhejiang Normal Univ, Inst Precis Machinery, Jinhua, Zhejiang, Peoples R China
关键词
Piezoelectric energy harvester; magnetic coupling; nonlinear vibration; rotational motion; SIMULATION;
D O I
10.1007/s11664-021-08910-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a piezoelectric energy harvester with rotational magnetic excitation. Through the rotation of the rotating body, the intermittent magnetic force between the driving magnet and the tip magnetic mass drives the piezoelectric element to vibrate nonlinearly to generate electrical energy. The working principle and vibration model of the proposed energy harvester are studied theoretically and experimentally. With two driving magnets, 5-g tip magnetic mass, and 8-mm radial excitation distances, the piezoelectric energy harvester captures energy efficiently. The results demonstrate that the piezoelectric energy harvester produces three resonance frequencies of 5 Hz, 8 Hz, and 10 Hz. When the rotation frequency is 8 Hz, the maximum open-circuit voltages of the primary and auxiliary piezoelectric beam is 63.24 V and 30.38 V, respectively. The primary and auxiliary piezoelectric beam gets the maximum average power with external resistance is 125 K omega and 75 K omega, respectively. The maximum average power of the primary and auxiliary piezoelectric beam is 12.24 mW and 3.92 mW, respectively. At the maximum power of the primary and auxiliary piezoelectric beam, the voltage across the resistance is 39.12 V and 17.12 V, respectively.
引用
收藏
页码:3228 / 3240
页数:13
相关论文
共 50 条
[21]   Theoretical and Experimental Investigation of a Rotational Magnetic Couple Piezoelectric Energy Harvester [J].
Sun, Feng ;
Dong, Runhong ;
Zhou, Ran ;
Xu, Fangchao ;
Mei, Xutao .
MICROMACHINES, 2022, 13 (06)
[22]   A piezoelectric energy harvester based on multi-cantilevers and magnetic force [J].
Wang, Jia ;
Bo, Fan ;
Fang, Jiwen ;
Zhao, Jiuchun ;
Li, Chong .
ENERGY REPORTS, 2022, 8 :11638-11645
[23]   Magnetic coupling gas piezoelectric energy harvester based on turbine structure [J].
Kan J.-W. ;
Yang Z.-M. ;
Wang S.-Y. ;
Huang X. ;
Zhang Z.-H. ;
Liao Y. ;
Wen Y.-J. .
Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2022, 35 (05) :1174-1180
[24]   Broadband power generation of piezoelectric vibration energy harvester with magnetic coupling [J].
Jiang, Junxiang ;
Liu, Shaogang ;
Zhao, Dan ;
Feng, Lifeng .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2019, 30 (15) :2272-2282
[25]   A lever-type piezoelectric wave energy harvester based on magnetic coupling and inertial vibration [J].
Liu, Renwen ;
Wang, Hongxin ;
Sun, Lei ;
Li, Xiaotao ;
He, Lipeng .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2024, 62
[26]   Vibration Characteristics and Experimental Research of an Improved Bistable Piezoelectric Energy Harvester [J].
Zhang, Xuhui ;
Tian, Hao ;
Pan, Jianan ;
Chen, Xiaoyu ;
Huang, Mengyao ;
Xu, Hengtao ;
Zhu, Fulin ;
Guo, Yan .
APPLIED SCIENCES-BASEL, 2023, 13 (01)
[27]   Simulation and Experimental Research on a New Symmetrical Hydraulic Piezoelectric Energy Harvester [J].
Zhang, Wenjie ;
Shang, Yang ;
Jiang, Hongyu ;
Meng, Fanxin ;
Zhao, Haixia ;
Shi, Weijie .
ENERGY TECHNOLOGY, 2024, 12 (11)
[28]   Design and experimental study of piezoelectric energy harvester based on high pressure gas excitation [J].
Shi W. ;
Yang C. ;
Zhang T. ;
Luo X. .
Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (12) :11-15
[29]   A Pavement Piezoelectric Energy Harvester for Small Input Displacements [J].
Yin, Bin ;
Wei, Jiaming ;
Jiang, Xin ;
Liu, Yan .
MICROMACHINES, 2023, 14 (02)
[30]   Circuit topology for piezoelectric transducers in a piezoelectric energy harvester [J].
Ozdemir, Ali Ekber .
IET RENEWABLE POWER GENERATION, 2019, 13 (12) :2105-2110