MONOTONE OPERATORS AND THE PROXIMAL POINT ALGORITHM IN COMPLETE CAT(0) METRIC SPACES

被引:55
作者
Khatibzadeh, Hadi [1 ]
Ranjbar, Sajad [1 ,2 ]
机构
[1] Univ Zanjan, Dept Math, POB 45195-313, Zanjan, Iran
[2] Higher Educ Ctr Eghlid, Coll Sci, Dept Math, Eghlid, Iran
关键词
Hadamard space; monotone operator; proximal point algorithm; Delta-convergence; subdifferential; nonexpansive mapping; DELTA-CONVERGENCE;
D O I
10.1017/S1446788716000446
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we generalize monotone operators, their resolvents and the proximal point algorithm to complete CAT(0) spaces. We study some properties of monotone operators and their resolvents. We show that the sequence generated by the inexact proximal point algorithm Delta-converges to a zero of the monotone operator in complete CAT(0) spaces. A strong convergence (convergence in metric) result is also presented. Finally, we consider two important special cases of monotone operators and we prove that they satisfy the range condition (see Section 4 for the definition), which guarantees the existence of the sequence generated by the proximal point algorithm.
引用
收藏
页码:70 / 90
页数:21
相关论文
共 23 条
  • [1] ON THE CONVERGENCE OF INEXACT PROXIMAL POINT ALGORITHM ON HADAMARD MANIFOLDS
    Ahmadi, P.
    Khatibzadeh, H.
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02): : 419 - 433
  • [2] [Anonymous], 1999, Metric structures for Riemannian and nonRiemannian spaces
  • [3] Bacák M, 2015, T AM MATH SOC, V367, P3929
  • [4] The proximal point algorithm in metric spaces
    Bacak, Miroslav
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2013, 194 (02) : 689 - 701
  • [5] Quasilinearization and curvature of Aleksandrov spaces
    Berg, I. D.
    Nikolaev, I. G.
    [J]. GEOMETRIAE DEDICATA, 2008, 133 (01) : 195 - 218
  • [6] INFINITE PRODUCTS OF RESOLVENTS
    BREZIS, H
    LIONS, PL
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) : 329 - 345
  • [7] Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9
  • [8] Burago D., 2001, A Course in Metric Geometry, DOI [10.1090/gsm/033, DOI 10.1090/GSM/033]
  • [9] Dehghan H., J NONLINEAR CONVEX A
  • [10] On Δ-convergence theorems in CAT(0) spaces
    Dhompongsa, S.
    Panyanak, B.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (10) : 2572 - 2579