Interpretable, calibrated neural networks for analysis and understanding of inelastic neutron scattering data

被引:17
作者
Butler, Keith T. [1 ,2 ]
Le, Manh Duc [3 ]
Thiyagalingam, Jeyan [1 ,4 ]
Perring, Toby G. [3 ]
机构
[1] STFC Rutherford Appleton Lab, Dept Comp Sci, SciML, Harwell Campus, Didcot OX11 0QX, Oxon, England
[2] Univ Oxford, Dept Mat Sci & Engn, 21 Banbury Rd, Oxford OX2 6HT, England
[3] STFC Rutherford Appleton Lab, ISIS Neutron & Muon Source, Harwell Campus, Didcot OX11 0QX, Oxon, England
[4] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
基金
英国工程与自然科学研究理事会;
关键词
neutron scattering; machine learning; perovskite;
D O I
10.1088/1361-648X/abea1c
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Deep neural networks (NNs) provide flexible frameworks for learning data representations and functions relating data to other properties and are often claimed to achieve 'super-human' performance in inferring relationships between input data and desired property. In the context of inelastic neutron scattering experiments, however, as in many other scientific scenarios, a number of issues arise: (i) scarcity of labelled experimental data, (ii) lack of uncertainty quantification on results, and (iii) lack of interpretability of the deep NNs. In this work we examine approaches to all three issues. We use simulated data to train a deep NN to distinguish between two possible magnetic exchange models of a half-doped manganite. We apply the recently developed deterministic uncertainty quantification method to provide error estimates for the classification, demonstrating in the process how important realistic representations of instrument resolution in the training data are for reliable estimates on experimental data. Finally we use class activation maps to determine which regions of the spectra are most important for the final classification result reached by the network.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source [J].
Abernathy, D. L. ;
Stone, M. B. ;
Loguillo, M. J. ;
Lucas, M. S. ;
Delaire, O. ;
Tang, X. ;
Lin, J. Y. Y. ;
Fultz, B. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (01)
[2]   Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science [J].
Agrawal, Ankit ;
Choudhary, Alok .
APL MATERIALS, 2016, 4 (05)
[3]  
[Anonymous], 1982, Competition and Cooperation in Neural Nets, DOI DOI 10.1007/978-3-642-46466-9_18
[4]   Classifying and analyzing small-angle scattering data using weighted k nearest neighbors machine learning techniques [J].
Archibald, Richard K. ;
Doucet, Mathieu ;
Johnston, Travis ;
Young, Steven R. ;
Yang, Erika ;
Heller, William T. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2020, 53 :326-334
[5]   Probing topological properties of a three-dimensional lattice dimer model with neural networks [J].
Bednik, Grigory .
PHYSICAL REVIEW B, 2019, 100 (18)
[6]   LET, a cold neutron multi-disk chopper spectrometer at ISIS [J].
Bewley, R. I. ;
Taylor, J. W. ;
Bennington, S. M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 637 (01) :128-134
[7]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[8]  
Butler KT., 2020, INTERPRETABLE ML NEU
[9]  
Buts A., 2020, PACE PROPER ANAL COH
[10]  
Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/NPHYS4035, 10.1038/nphys4035]