A CHARACTERISATION FOR A GROUPOID GALOIS EXTENSION USING PARTIAL ISOMORPHISMS

被引:7
|
作者
Cortes, Wagner [1 ]
Tamusiunas, Thaisa [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat, Av Bento Goncalves 9500, BR-91509900 Porto Alegre, RS, Brazil
[2] Univ Fed Ciencias Saude Porto Alegre, Dept Ciencias Exatas & Sociais Aplicadas, Rua Sarmento Leite 245, BR-90050170 Porto Alegre, RS, Brazil
关键词
groupoid; groupoid Galois extension; partial isomorphism;
D O I
10.1017/S0004972717000077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S vertical bar(R) be a groupoid Galois extension with Galois groupoid G such that E-g(Gr(g)) subset of C1(g), for all g is an element of G, where C is the centre of S, G(r(g)) is the principal group associated to r(g) and {E-g}(g is an element of G) are the ideals of S. We give a complete characterisation in terms of a partial isomorphism groupoid for such extensions, showing that G = (boolean OR) over dot(g is an element of G)Isom(R)(Eg-1, E-g) if and only if E-g is a connected commutative algebra or E-g = E-g(Gr(g)) circle plus E-g(Gr(g)) where E-g(Gr(g)) is connected, for all g is an element of G.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 50 条
  • [1] EXTENSION OF ISOMORPHISMS AND GALOIS THEORY
    HACQUE, M
    JOURNAL OF ALGEBRA, 1988, 113 (01) : 136 - 200
  • [2] Galois correspondence for partial groupoid actions
    Lautenschlaeger, Wesley G.
    Tamusiunas, Thaisa
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [3] The structure of a partial Galois extension
    Kuo, Jung-Miao
    Szeto, George
    MONATSHEFTE FUR MATHEMATIK, 2014, 175 (04): : 565 - 576
  • [4] PARTIAL GROUPOID ACTIONS: GLOBALIZATION, MORITA THEORY, AND GALOIS THEORY
    Bagio, Dirceu
    Paques, Antonio
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) : 3658 - 3678
  • [5] The structure of a partial Galois extension
    Jung-Miao Kuo
    George Szeto
    Monatshefte für Mathematik, 2014, 175 : 565 - 576
  • [6] ON THE DEFINITION OF THE GALOIS GROUPOID
    Umemura, Hiroshi
    ASTERISQUE, 2009, (323) : 441 - 452
  • [7] The structure of a partial Galois extension II
    Kuo, Jung-Miao
    Szeto, George
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (04)
  • [8] ISOMORPHISMS OF GALOIS GROUPS
    UCHIDA, K
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1976, 28 (04) : 617 - 620
  • [9] On the Galois map for groupoid actions
    Paques, Antonio
    Tamusiunas, Thaisa
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (03) : 1037 - 1047
  • [10] ISOMORPHISMS IN K-THEORY FROM ISOMORPHISMS IN GROUPOID HOMOLOGY THEORIES
    Miller, Alistair
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025,