Nanoplasmonically-engineered random lasing in organic semiconductor thin films

被引:12
作者
Heydari, Esmaeil [1 ,2 ]
Pastoriza-Santos, Isabel [3 ,4 ]
Liz-Marzan, Luis M. [3 ,5 ,6 ]
Stumpe, Joachim [2 ,7 ]
机构
[1] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[2] Fraunhofer Inst Appl Polymer Res IAP, Dept Polymers & Opt, D-14476 Potsdam, Germany
[3] Univ Vigo, Dept Quim Fis, Vigo 36310, Spain
[4] Univ Vigo, CINBIO, Vigo 36310, Spain
[5] CIC BiomaGUNE, BioNanoPlasmon Lab, San Sebastian 20014, Spain
[6] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
[7] Univ Potsdam, Fac Sci, D-14476 Potsdam, Germany
关键词
RANDOM LASER; NANOPARTICLES; PLASMONICS; DEPENDENCE;
D O I
10.1039/c7nh00054e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate plasmonically nano-engineered coherent random lasing and stimulated emission enhancement in a hybrid gainmedium of organic semiconductors doped with core-shell plasmonic nanoparticles. The gain medium is composed of a 300 +/- 2 nm thin waveguide of an organic semiconductor, doped with 53 nm gold nanoparticle cores, isolated within silica shells. Upon loading the nanoparticles, the threshold of amplified spontaneous emission is reduced from 1.75 mu J cm(-2) x 10(2) for an undoped gain medium, to 0.35 mu J cm(-2) x 10(2) for a highly concentrated gain medium, and lasing spikes narrower than 0.1 nm are obtained. Most importantly, selection of silica shells with thicknesses of 10, 17 and 21 nm enables engineering of the plasmon-exciton energy coupling and consequently tuning of the laser slope efficiency. With this approach, the slope efficiency is increased by two times by decreasing the silica shell from 21 nm down to 10 nm, due to the enhancement of the localized electric field.
引用
收藏
页码:261 / 266
页数:6
相关论文
共 27 条
[1]   Spectral dependence of single molecule fluorescence enhancement [J].
Bharadwaj, Palash ;
Novotny, Lukas .
OPTICS EXPRESS, 2007, 15 (21) :14266-14274
[2]   Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles [J].
Chen, Yeechi ;
Munechika, Keiko ;
Ginger, David S. .
NANO LETTERS, 2007, 7 (03) :690-696
[3]   Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser [J].
Dice, GD ;
Mujumdar, S ;
Elezzabi, AY .
APPLIED PHYSICS LETTERS, 2005, 86 (13) :1-3
[4]   Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures [J].
Gerber, Sebastian ;
Reil, Frank ;
Hohenester, Ulrich ;
Schlagenhaufen, Thomas ;
Krenn, Joachim R. ;
Leitner, Alfred .
PHYSICAL REVIEW B, 2007, 75 (07)
[5]   Resonance-driven random lasing [J].
Gottardo, Stefano ;
Sapienza, Riccardo ;
Garcia, Pedro D. ;
Blanco, Alvaro ;
Wiersma, Diederik S. ;
Lopez, Cefe .
NATURE PHOTONICS, 2008, 2 (07) :429-432
[6]   Single-molecule measurements of gold-quenched quantum dots [J].
Gueroui, Z ;
Libchaber, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (16) :166108-1
[7]   Dopamine sensing and measurement using threshold and spectral measurements in random lasers [J].
Ismail, Wan Zakiah Wan ;
Liu, Guozhen ;
Zhang, Kai ;
Goldys, Ewa M. ;
Dawes, Judith M. .
OPTICS EXPRESS, 2016, 24 (02) :A85-A91
[8]   The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment [J].
Kelly, KL ;
Coronado, E ;
Zhao, LL ;
Schatz, GC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :668-677
[9]  
Maier SA, 2001, ADV MATER, V13, P1501, DOI 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO
[10]  
2-Z