Reduced fast electron transport in shock-heated plasma in multilayer targets due to self-generated magnetic fields

被引:0
作者
McGuffey, C. [1 ]
May, J. [2 ]
Yabuuchi, T. [1 ]
Sawada, H. [1 ]
Wei, M. S. [3 ]
Stephens, R. B. [3 ]
Stoeckl, C. [4 ]
Mori, W. B. [2 ]
McLean, H. S. [5 ]
Patel, P. K. [5 ]
Beg, F. N. [1 ]
机构
[1] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Gen Atom Co, POB 85608, San Diego, CA 92186 USA
[4] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
FAST IGNITION; LASER;
D O I
10.1103/PhysRevE.98.033208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fast electron transport has been studied in cold solid density CH, cold CH foam (200 mg/cm(3)), and CH plasma (40 eV 30 mg/cm(3)) targets-the latter created by shocking the CH foam with a 1.2 kJ long pulse laser and allowing it to expand. The fast electrons were produced using the OMEGA EP laser pulse (800 J, 8 ps) incident on a Au flat target. With the CH plasma, the fluence of fast electrons reaching a Cu foil at the far side of the transport was reduced significantly (25 x weaker peak K alpha emission). Particle-in-cell simulations using the OSIRIS code modeled fast electron transport in the unshocked foam and plasma cases assuming fixed ionization and including source generation, transport in Au and CH layers, Coulomb collisions, and refluxing. Simulations indicate two main mechanisms which alter electron energy transport through the target between the foam and plasma cases, both due to the magnetic field: a collimating field in the CH region, caused by the resistivity of the return current and more prevalent in the foam; and an insulating field at the Au-CH interface, present only with the plasma.
引用
收藏
页数:6
相关论文
共 27 条
  • [1] Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel
    Atzeni, S
    [J]. PHYSICS OF PLASMAS, 1999, 6 (08) : 3316 - 3326
  • [2] Magnetic field in short-pulse high-intensity laser-solid experiments
    Bell, AR
    Davies, JR
    Guerin, SM
    [J]. PHYSICAL REVIEW E, 1998, 58 (02): : 2471 - 2473
  • [3] Effect of Target Material on Fast-Electron Transport and Resistive Collimation
    Chawla, S.
    Wei, M. S.
    Mishra, R.
    Akli, K. U.
    Chen, C. D.
    McLean, H. S.
    Morace, A.
    Patel, P. K.
    Sawada, H.
    Sentoku, Y.
    Stephens, R. B.
    Beg, F. N.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (02)
  • [4] Modelling electron transport for fast ignition
    Evans, Roger G.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (12B) : B87 - B93
  • [5] Fonseca RA, 2002, LECT NOTES COMPUT SC, V2331, P342
  • [6] Filamented transport of laser-generated relativistic electrons penetrating a solid target
    Gremillet, L
    Bonnaud, G
    Amiranoff, F
    [J]. PHYSICS OF PLASMAS, 2002, 9 (03) : 941 - 948
  • [7] Two-dimensional particle-in-cell simulation for magnetized transport of ultra-high relativistic currents in plasma
    Honda, M
    Meyer-ter-Vehn, J
    Pukhov, A
    [J]. PHYSICS OF PLASMAS, 2000, 7 (04) : 1302 - 1308
  • [8] Interaction Physics of Multipicosecond Petawatt Laser Pulses with Overdense Plasma
    Kemp, A. J.
    Divol, L.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (19)
  • [9] Krall N., 1973, Principles of Plasma Physics actic
  • [10] Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5x1020 W cm-2
    Lancaster, K. L.
    Green, J. S.
    Hey, D. S.
    Akli, K. U.
    Davies, J. R.
    Clarke, R. J.
    Freeman, R. R.
    Habara, H.
    Key, M. H.
    Kodama, R.
    Krushelnick, K.
    Murphy, C. D.
    Nakatsutsumi, M.
    Simpson, P.
    Stephens, R.
    Stoeckl, C.
    Yabuuchi, T.
    Zepf, M.
    Norreys, P. A.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (12)