WEIGHTED FLOATING BODIES AND POLYTOPAL APPROXIMATION

被引:18
|
作者
Besau, Florian [1 ]
Ludwig, Monika [2 ]
Werner, Elisabeth M. [3 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, Robert Mayer Str 10, D-60054 Frankfurt, Germany
[2] Tech Univ Wien, Inst Diskrete Math Geometrie, Wiedner Hauptstr 8-10-1046, A-1040 Vienna, Austria
[3] Case Western Reserve Univ, Dept Math Appl Math & Stat, 10900 Euclid Ave, Cleveland, OH 44106 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
AFFINE SURFACE; CONVEX-BODIES; STEPWISE APPROXIMATION;
D O I
10.1090/tran/7233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Asymptotic results for weighted floating bodies are established and used to obtain new proofs for the existence of floating areas on the sphere and in hyperbolic space and to establish the existence of floating areas in Hilbert geometries. Results on weighted best and random approximation and the new approach to floating areas are combined to derive new asymptotic approximation results on the sphere, in hyperbolic space, and in Hilbert geometries.
引用
收藏
页码:7129 / 7148
页数:20
相关论文
共 20 条
  • [1] Ulam floating bodies
    Huang, Han
    Slomka, Boaz A.
    Werner, Elisabeth M.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 100 (02): : 425 - 446
  • [2] Duality of Floating and Illumination Bodies
    Mordhorst, Olaf
    Werner, Elisabeth M.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (05) : 1507 - 1541
  • [3] Flag numbers and floating bodies
    Besau, Florian
    Schuett, Carsten
    Werner, Elisabeth M.
    ADVANCES IN MATHEMATICS, 2018, 338 : 912 - 952
  • [4] Approximation of smooth convex bodies by random polytopes
    Grote, Julian
    Werner, Elisabeth
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [5] Mechanics of floating bodies
    Beig, Robert
    Schmidt, Bernd G.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2255):
  • [6] Floating and Illumination Bodies for Polytopes: Duality Results
    Mordhorst, Olaf
    Werner, Elisabeth M.
    DISCRETE ANALYSIS, 2019,
  • [7] Separation bodies: a conceptual dual to floating bodies
    Schneider, Rolf
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (01): : 157 - 170
  • [8] Floating Bodies in Neutral Equilibrium
    Finn, Robert
    Sloss, Mattie
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2009, 11 (03) : 459 - 463
  • [9] On bodies floating in equilibrium in every orientation
    Ryabogin, Dmitry
    GEOMETRIAE DEDICATA, 2023, 217 (04)
  • [10] Archimedes' principle of flotation and floating bodies: construction, extensions and related problems
    Liu, Chunyan
    Werner, Elisabeth M.
    Ye, Deping
    Zhang, Ning
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (01) : 237 - 256