The nature of three-body interactions in DFT: Exchange and polarization effects

被引:16
作者
Hapka, Michal [1 ]
Rajchel, Lukasz [2 ]
Modrzejewski, Marcin [1 ]
Schaeffer, Rainer [2 ]
Chalasinski, Grzegorz [1 ]
Szczesniak, Malgorzata M. [3 ]
机构
[1] Univ Warsaw, Fac Chem, Ul L Pasteura 1, PL-02093 Warsaw, Poland
[2] Univ Duisburg Essen, Fac Chem, Univ Str 5, D-45117 Essen, Germany
[3] Oakland Univ, Dept Chem, Rochester, MI 48309 USA
基金
美国国家科学基金会;
关键词
ADAPTED PERTURBATION-THEORY; DENSITY-FUNCTIONAL THEORY; DER-WAALS INTERACTIONS; INTERMOLECULAR FORCES; AB-INITIO; NONADDITIVE INTERACTIONS; BENCHMARK CALCULATIONS; INFRARED-SPECTROSCOPY; ROTATIONAL SPECTRA; INTERACTION ENERGY;
D O I
10.1063/1.4986291
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a physically motivated decomposition of density functional theory (DFT) 3-body nonadditive interaction energies into the exchange and density-deformation (polarization) components. The exchange component represents the effect of the Pauli exclusion in the wave function of the trimer and is found to be challenging for density functional approximations (DFAs). The remaining density-deformation nonadditivity is less dependent upon the DFAs. Numerical demonstration is carried out for rare gas atom trimers, Ar-2-HX (X = F, Cl) complexes, and small hydrogen-bonded and van der Waals molecular systems. None of the tested semilocal, hybrid, and range-separated DFAs properly accounts for the nonadditive exchange in dispersion-bonded trimers. By contrast, for hydrogen-bonded systems, range-separated DFAs achieve a qualitative agreement to within 20% of the reference exchange energy. A reliable performance for all systems is obtained only when the monomers interact through the Hartree-Fock potential in the dispersion-free Pauli blockade scheme. Additionally, we identify the nonadditive second-order exchange-dispersion energy as an important but overlooked contribution in force-field-like dispersion corrections. Our results suggest that range-separated functionals do not include this component, although semilocal and global hybrid DFAs appear to imitate it in the short range. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 89 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]   Hard Numbers for Large Molecules: Toward Exact Energetics for Supramolecular Systems [J].
Ambrosetti, Alberto ;
Alfe, Dario ;
DiStasio, Robert A., Jr. ;
Tkatchenko, Alexandre .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (05) :849-855
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[5]   Perspective: Fifty years of density-functional theory in chemical physics [J].
Becke, Axel D. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (18)
[6]   Modeling Polymorphic Molecular Crystals with Electronic Structure Theory [J].
Beran, Gregory J. O. .
CHEMICAL REVIEWS, 2016, 116 (09) :5567-5613
[7]   CALCULATION OF SMALL MOLECULAR INTERACTIONS BY DIFFERENCES OF SEPARATE TOTAL ENERGIES - SOME PROCEDURES WITH REDUCED ERRORS [J].
BOYS, SF ;
BERNARDI, F .
MOLECULAR PHYSICS, 1970, 19 (04) :553-&
[8]  
Bukowski R., 2012, SAPT2012: An Ab Initio Program for Symmetry-Adapted Perturbation Theory
[9]   Predictions of the properties of water from first principles [J].
Bukowski, Robert ;
Szalewicz, Krzysztof ;
Groenenboom, Gerrit C. ;
van der Avoird, Ad .
SCIENCE, 2007, 315 (5816) :1249-1252
[10]   Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals [J].
Burns, Lori A. ;
Vazquez-Mayagoitia, Alvaro ;
Sumpter, Bobby G. ;
Sherrill, C. David .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (08)