Exciting Efficient Oscillations in Nonlinear Mechanical Systems Through Eigenmanifold Stabilization

被引:20
作者
Della Santina, Cosimo [1 ,2 ,3 ]
Albu-Schaeffer, Alin [1 ,2 ]
机构
[1] German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany
[2] Tech Univ Munich, Dept Math & Informat, D-80333 Garching, Germany
[3] Delft Univ Technol, Cognit Robot Dept, NL-2628 CD Delft, Netherlands
来源
IEEE CONTROL SYSTEMS LETTERS | 2021年 / 5卷 / 06期
基金
欧洲研究理事会;
关键词
Robots; Robot kinematics; Mechanical systems; Oscillators; Trajectory; Nonlinear dynamical systems; Springs; Robotics; stability of nonlinear systems; PID control; flexible structures; control applications; MODES;
D O I
10.1109/LCSYS.2020.3048228
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonlinear modes are a well investigated concept in dynamical systems theory, extending the celebrated modal analysis of linear mechanical systems to nonlinear ones. This letter moves a first step in the direction of combining control theory and nonlinear modal analysis towards the implementation of hyper-efficient oscillatory behaviors in mechanical systems with non-Euclidean metric. Rather than forcing a prescribed evolution, we first investigate the regular behaviors that can be autonomously expressed by the system, and then we design a controller that excites them. A first implementation of this concept is proposed, analyzed, and tested in simulation.
引用
收藏
页码:1916 / 1921
页数:6
相关论文
共 24 条
[1]   A review on nonlinear modes in conservative mechanical systems [J].
Albu-Schaeffer, Alin ;
Della Santina, Cosimo .
ANNUAL REVIEWS IN CONTROL, 2020, 50 :49-71
[2]  
Buss BG, 2016, P AMER CONTR CONF, P4785, DOI 10.1109/ACC.2016.7526111
[3]   The Quest for Natural Machine Motion An Open Platform to Fast-Prototype Articulated Soft Robots [J].
Della Santina, Cosimo ;
Piazza, Cristina ;
Gasparri, Gian Maria ;
Bonilla, Manuel ;
Catalano, Manuel ;
Garabini, Manolo ;
Grioli, Giorgio ;
Bicchi, Antonio .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2017, 24 (01) :48-56
[4]  
Forni F, 2014, IEEE DECIS CONTR P, P3848, DOI 10.1109/CDC.2014.7039987
[5]   Differential Dissipativity Theory for Dominance Analysis [J].
Forni, Fulvio ;
Sepulchre, Rodolphe .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (06) :2340-2351
[6]  
Garofalo G., 2018, IFAC-PapersOnLine, V51, P73, DOI [DOI 10.1016/J.IFACOL.2018, 10.1016/j.ifacol.2018.11.520]
[7]  
Haddadin S, 2012, IEEE INT CONF ROBOT, P3347, DOI 10.1109/ICRA.2012.6225190
[8]  
Ichikawa A, 2001, LECT NOTES CONTR INF, V265, P1
[9]  
Isidori A., 2016, ADV TXB CONTROL SIGN
[10]   Nonlinear normal modes, Part I: A useful framework for the structural dynamicist [J].
Kerschen, G. ;
Peeters, M. ;
Golinval, J. C. ;
Vakakis, A. F. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (01) :170-194