Study on the nitrogen transformation during the primary pyrolysis of sewage sludge by Py-GC/MS and Py-FTIR

被引:72
|
作者
Zhou, Peng [1 ]
Xiong, Sijiang [2 ,3 ]
Zhang, Yuxuan [2 ]
Jiang, Hua [1 ]
Chi, Yongchao [2 ]
Li, Lei [4 ]
机构
[1] Minist Environm Protect, Appraisal Ctr Environm & Engn, Beijing 100012, Peoples R China
[2] Tsinghua Univ, Key Lab Thermal Sci & Power Engn, Beijing 100084, Peoples R China
[3] State Power Investment Cent Res Inst, Div Adv Nucl Energy Technol, Beijing 102209, Peoples R China
[4] Beijing Municipal Inst Labour Protect, Beijing 100054, Peoples R China
基金
中国国家自然科学基金;
关键词
Sewage sludge; Pyrolysis; Nitrogen transformation; Py-GC/MS; Py-FTIR; SO(X) PRECURSORS; NOX PRECURSORS; BIOMASS; COAL; NO(X); NH3; HCN; GASIFICATION; HYDROGEN; YIELDS;
D O I
10.1016/j.ijhydene.2017.04.144
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The nitrogen transformation with attention to the intermediates and NO precursors has been investigated during the primary pyrolysis of sewage sludge by using Pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS) and Pyrolyzer-Fourier transform infrared spectrometry (Py-FTIR). A three-stage process of nitrogen transformation during the sewage sludge pyrolysis was suggested. The decomposition of labile protein and inorganic ammonium salt mainly occurred in the first stage (<300 degrees C), giving rise to a small amount of NH3. In the second stage (300-600 degrees C), the macromolecular protein firstly cracked into small molecular amine compounds, and then went through deamination process, contributed to a large release of NH3. In the third stage (600-900 degrees C), the amine compounds converted into nitriles, and generated a large amount of HCN, while the formation of NH3 slowed down accordingly. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:18181 / 18188
页数:8
相关论文
共 50 条
  • [1] A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS
    Lin, Yan
    Liao, Yanfen
    Yu, Zhaosheng
    Fang, Shiwen
    Ma, Xiaoqian
    ENERGY CONVERSION AND MANAGEMENT, 2017, 151 : 190 - 198
  • [2] Thermal behaviour, kinetics and fast pyrolysis of Cynodon dactylon grass using Py-GC/MS and Py-FTIR analyser
    Mishra, Ranjeet Kumar
    Lu, Qiang
    Mohanty, Kaustubha
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2020, 150
  • [3] Pyrolysis behaviors of oil sludge based on TG/FTIR and PY-GC/MS
    Wei Song
    Jianguo Liu
    Yongfeng Nie
    Frontiers of Environmental Science & Engineering in China, 2010, 4 : 59 - 64
  • [4] Pyrolysis behaviors of oil sludge based on TG/FTIR and PY-GC/MS
    Song, Wei
    Liu, Jianguo
    Nie, Yongfeng
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING IN CHINA, 2010, 4 (01): : 59 - 64
  • [5] Mechanism of xylan pyrolysis by Py-GC/MS
    Wang Shu-rong
    Liang Tao
    Ru Bin
    Guo Xiu-juan
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2013, 29 (04) : 782 - 787
  • [6] Pyrolysis of typical MSW components by Py-GC/MS and TG-FTIR
    Ma, Wenchao
    Rajput, Gulzeb
    Pan, Minhui
    Lin, Fawei
    Zhong, Lei
    Chen, Guanyi
    FUEL, 2019, 251 : 693 - 708
  • [7] RDF pyrolysis by TG-FTIR and Py-GC/MS and combustion in a double furnaces reactor
    Chen, Xiaolin
    Xie, Junlin
    Mei, Shuxia
    He, Feng
    Yang, Hu
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 136 (02) : 893 - 902
  • [8] Mechanism of xylan pyrolysis by Py-GC/MS
    Shu-rong Wang
    Tao Liang
    Bin Ru
    Xiu-juan Guo
    Chemical Research in Chinese Universities, 2013, 29 : 782 - 787
  • [9] TG-FTIR and Py-GC/MS analysis on pyrolysis and combustion of pine sawdust
    Gao, Ningbo
    Li, Aimin
    Quan, Cui
    Du, Lin
    Duan, Yue
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 100 : 26 - 32
  • [10] Pyrolysis behaviour of shellfish waste via TG-FTIR and Py-GC/MS
    Yang, Yan
    Foong, Shin Ying
    Yek, Peter Nai Yuh
    Mohammed, Abdallah A. A.
    Verma, Meenaksi
    Ng, Hui Suan
    Jung, Sang-Chul
    He, Yifeng
    Peng, Wanxi
    Lam, Su Shiung
    SUSTAINABLE CHEMISTRY AND PHARMACY, 2023, 36