The Influence of the Output Impedances of Peaking Power Amplifier on Broadband Doherty Amplifiers

被引:66
作者
Shi, Weimin [1 ]
He, Songbai [1 ]
You, Fei [1 ]
Xie, Haiping [1 ,2 ]
Naah, Gideon [1 ]
Liu, Qiang-An [1 ,2 ]
Li, Qirong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu 611731, Sichuan, Peoples R China
[2] ZTE Corp China, Shenzhen 2677000, Peoples R China
基金
中国国家自然科学基金;
关键词
Broadband; Doherty; output impedance; peaking power amplifier (PA); HIGH-EFFICIENCY; DESIGN; BANDWIDTH;
D O I
10.1109/TMTT.2017.2673822
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effect of the output impedance of peaking power amplifier (PA) on Doherty PAs (DPAs) is analyzed in this paper. In the design procedure of DPAs, the ideal case is that the output impedance of auxiliary PA is infinite at output power back-off (OPBO) level. However, it is almost impossible to realize this perfect condition in broadband DPAs. Therefore, when the output impedance of peaking path deviates from infinity, some potential effects on DPAs must be produced. In this paper, these effects are explained at the internal plane of transistors. The conclusion is that, at different normalized frequencies, there are different optimal impedance regions for the output impedance of peaking stage. This means that the noninfinite output impedances of peaking stage can enhance the performances of broadband DPAs so long as they are elaborately processed. A 1.65-2.7-GHz (48% bandwidth) broadband DPA is designed considering the effects of peaking PA. The experimental results show that this DPA obtains a drain efficiency of 41%-59.6% at 6-dB OPBO levels and a drain efficiency of 55.8%-72.2% at saturation power levels. The maximum output power across the entire operating band is 43.1-45.2 dBm with a gain of 9.0-10.2 dB. Furthermore, the designed DPA achieves an adjacent channel leakage ratio of -45.8 dBc with an output power of 36.1 dBm at 2.0 GHz after digital predistortion when it is excited by 5-MHz WCDMA signal with a peaking-to-average power ratio of 8.6 dB.
引用
收藏
页码:3002 / 3013
页数:12
相关论文
共 30 条
[1]   A Transformer-Less Load-Modulated (TLLM) Architecture for Efficient Wideband Power Amplifiers [J].
Akbarpour, Mohammadhassan ;
Helaoui, Mohamed ;
Ghannouchi, Fadhel M. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (09) :2863-2874
[2]   A 1-3-GHz Digitally Controlled Dual-RF Input Power-Amplifier Design Based on a Doherty-Outphasing Continuum Analysis [J].
Andersson, Christer M. ;
Gustafsson, David ;
Cahuana, Jessica Chani ;
Hellberg, Richard ;
Fager, Christian .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (10) :3743-3752
[3]   Frequency Response Analysis and Bandwidth Extension of the Doherty Amplifier [J].
Bathich, Khaled ;
Markos, Asdesach Z. ;
Boeck, Georg .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (04) :934-944
[4]   Increasing Doherty Amplifier Average Efficiency Exploiting Device Knee Voltage Behavior [J].
Colantonio, Paolo ;
Giannini, Franco ;
Giofre, Rocco ;
Piazzon, Luca .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (09) :2295-2305
[5]   Theory and Experimental Results of a Class F AB-C Doherty Power Amplifier [J].
Colantonio, Paolo ;
Giannini, Franco ;
Giofre, Rocco ;
Piazzon, Luca .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2009, 57 (08) :1936-1947
[6]   The AB-C Doherty Power Amplifier. Part I: Theory [J].
Colantonio, Paolo ;
Giannini, Franco ;
Giofre, Rocco ;
Piazzon, Luca .
INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2009, 19 (03) :293-306
[7]  
Dahlman E, 2014, IEEE COMMUN MAG, V52
[8]   Mitigation of Bandwidth Limitation in Wireless Doherty Amplifiers With Substantial Bandwidth Enhancement Using Digital Techniques [J].
Darraji, Ramzi ;
Ghannouchi, Fadhel M. ;
Helaoui, Mohamed .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (09) :2875-2885
[9]   A new high efficiency power amplifier for modulated waves [J].
Doherty, WH .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1936, 24 (09) :1163-1182
[10]   A Closed-Form Design Technique for Ultra-Wideband Doherty Power Amplifiers [J].
Giofre, Rocco ;
Piazzon, Luca ;
Colantonio, Paolo ;
Giannini, Franco .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (12) :3414-3424