Decomposition of involutions on inertially split division algebras

被引:0
作者
Morandi, PJ [1 ]
Sethuraman, BA
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
[2] Calif State Univ Northridge, Dept Math, Northridge, CA 91330 USA
关键词
Tensor Product; Division Algebra; Simple Algebra; Central Simple Algebra; Central Division;
D O I
10.1007/s002090000131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a Henselian valued field with char((F)over bar) not equal 2, and let S be an inertially split F-central division algebra with involution sigma* that is trivial on an inertial lift in S of the field Z((S)over bar). We prove necessary and sufficient conditions for S to contain a sigma*-stable quaternion F-subalgebra, and for (S, sigma*) to decompose into a tensor product of quaternion algebras. These conditions are in terms of decomposability of an associated residue central simple algebra (I)over bar that arises from a Brauer roup decomposition of S.
引用
收藏
页码:195 / 212
页数:18
相关论文
共 15 条
[1]  
ALBERT AA, 1961, C PUB, V24
[2]   DIVISION ALGEBRAS OF DEGREE-4 AND DEGREE-8 WITH INVOLUTION [J].
AMITSUR, SA ;
ROWEN, LH ;
TIGNOL, JP .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 33 (02) :133-148
[3]   DISCRIMINANTS OF INVOLUTIONS ON HENSELIAN DIVISION-ALGEBRAS [J].
CHACRON, M ;
DHERTE, H ;
TIGNOL, JP ;
WADSWORTH, AR ;
YANCHEVSKII, VI .
PACIFIC JOURNAL OF MATHEMATICS, 1995, 167 (01) :49-79
[4]  
DHERTE H, 1944, MATH Z, V216, P629
[5]  
Draxl P. K., 1983, LONDON MATH SOC LECT, V81
[6]   DIVISION-ALGEBRAS OVER HENSELIAN FIELDS [J].
JACOB, B ;
WADSWORTH, A .
JOURNAL OF ALGEBRA, 1990, 128 (01) :126-179
[7]  
JEHNE W, 1952, ABH MATH SEM HAMBURG, V18, P70
[8]  
Knus M.-A., 1998, C PUBLICATIONS, V44
[9]  
Knus M.-A., 1991, B SOC MATH BELG A, V43, P89
[10]   PFAFFIANS, CENTRAL SIMPLE ALGEBRAS AND SIMILITUDES [J].
KNUS, MA ;
PARIMALA, R ;
SRIDHARAN, R .
MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (04) :589-604