Negativity of random pure states

被引:12
作者
Datta, Animesh [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
AVERAGE ENTROPY; PAGES CONJECTURE; ENTANGLEMENT; PROOF;
D O I
10.1103/PhysRevA.81.052312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper deals with the entanglement, as quantified by the negativity, of pure quantum states chosen at random from the invariant Haar measure. We show that it is a constant (0.72037) multiple of the maximum possible entanglement. In line with the results based on the concentration of measure, we find evidence that the convergence to the final value is exponentially fast. We compare the analytically calculated mean and standard deviationwith those calculated numerically for pure states generated via pseudorandom unitary matrices proposed by Emerson et al. [Science 302, 2098 (2003)]. Finally, we draw some conclusions about the geometry of quantum states based on our result.
引用
收藏
页数:7
相关论文
共 30 条
[1]  
[Anonymous], 1997, B
[2]   Are Random Pure States Useful for Quantum Computation? [J].
Bremner, Michael J. ;
Mora, Caterina ;
Winter, Andreas .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[3]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[4]   The emergence of typical entanglement in two-party random processes [J].
Dahlsten, O. C. O. ;
Oliveira, R. ;
Plenio, M. B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) :8081-8108
[5]   Entanglement and the power of one qubit [J].
Datta, A ;
Flammia, ST ;
Caves, CM .
PHYSICAL REVIEW A, 2005, 72 (04)
[6]   Signatures of nonclassicality in mixed-state quantum computation [J].
Datta, Animesh ;
Gharibian, Sevag .
PHYSICAL REVIEW A, 2009, 79 (04)
[7]   Quantum discord and the power of one qubit [J].
Datta, Animesh ;
Shaji, Anil ;
Caves, Carlton M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (05)
[8]   Convergence conditions for random quantum circuits [J].
Emerson, J ;
Livine, E ;
Lloyd, S .
PHYSICAL REVIEW A, 2005, 72 (06)
[9]   Pseudo-random unitary operators for quantum information processing [J].
Emerson, J ;
Weinstein, YS ;
Saraceno, M ;
Lloyd, S ;
Cory, DG .
SCIENCE, 2003, 302 (5653) :2098-2100
[10]   PROOF OF PAGES CONJECTURE ON THE AVERAGE ENTROPY OF A SUBSYSTEM [J].
FOONG, SK ;
KANNO, S .
PHYSICAL REVIEW LETTERS, 1994, 72 (08) :1148-1151