Predicting Atrial Fibrillation Recurrence by Combining Population Data and Virtual Cohorts of Patient-Specific Left Atrial Models

被引:50
作者
Roney, Caroline H. [1 ,2 ]
Sim, Iain [1 ]
Yu, Jin [1 ]
Beach, Marianne [1 ]
Mehta, Arihant [1 ]
Solis-Lemus, Jose Alonso [1 ]
Kotadia, Irum [1 ]
Whitaker, John [1 ,3 ]
Corrado, Cesare [1 ]
Razeghi, Orod [1 ]
Vigmond, Edward [4 ,5 ]
Narayan, Sanjiv M. [6 ,7 ]
O'Neill, Mark [1 ]
Williams, Steven E. [1 ,8 ]
Niederer, Steven A. [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Queen Mary Univ London, Sch Engn & Mat Sci, London, England
[3] Brigham & Womens Hosp, Dept Internal Med, Cardiovasc Div, 75 Francis St, Boston, MA 02115 USA
[4] Fdn Bordeaux Univ, IHU Liryc Electrophysiol & Heart Modeling Inst, Bordeaux, France
[5] Univ Bordeaux, UMR 5251, IMB, F-33400 Talence, France
[6] Stanford Univ, Dept Med, Palo Alto, CA 94304 USA
[7] Stanford Univ, Cardiovasc Inst, Palo Alto, CA 94304 USA
[8] Univ Edinburgh, Coll Med & Vet Med, Ctr Cardiovasc Sci, Edinburgh, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
atrial fibrillation; benchmarking; exercise test; machine learning; uncertainty; CATHETER ABLATION; FIBROSIS;
D O I
10.1161/CIRCEP.121.010253
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Current ablation therapy for atrial fibrillation is suboptimal, and long-term response is challenging to predict. Clinical trials identify bedside properties that provide only modest prediction of long-term response in populations, while patient-specific models in small cohorts primarily explain acute response to ablation. We aimed to predict long-term atrial fibrillation recurrence after ablation in large cohorts, by using machine learning to complement biophysical simulations by encoding more interindividual variability. METHODS: Patient-specific models were constructed for 100 atrial fibrillation patients (43 paroxysmal, 41 persistent, and 16 long-standing persistent), undergoing first ablation. Patients were followed for 1 year using ambulatory ECG monitoring. Each patient-specific biophysical model combined differing fibrosis patterns, fiber orientation maps, electrical properties, and ablation patterns to capture uncertainty in atrial properties and to test the ability of the tissue to sustain fibrillation. These simulation stress tests of different model variants were postprocessed to calculate atrial fibrillation simulation metrics. Machine learning classifiers were trained to predict atrial fibrillation recurrence using features from the patient history, imaging, and atrial fibrillation simulation metrics. RESULTS: We performed 1100 atrial fibrillation ablation simulations across 100 patient-specific models. Models based on simulation stress tests alone showed a maximum accuracy of 0.63 for predicting long-term fibrillation recurrence. Classifiers trained to history, imaging, and simulation stress tests (average 10-fold cross-validation area under the curve, 0.85 +/- 0.09; recall, 0.80 +/- 0.13; precision, 0.74 +/- 0.13) outperformed those trained to history and imaging (area under the curve, 0.66 +/- 0.17) or history alone (area under the curve, 0.61 +/- 0.14). CONCLUSION: A novel computational pipeline accurately predicted long-term atrial fibrillation recurrence in individual patients by combining outcome data with patient-specific acute simulation response. This technique could help to personalize selection for atrial fibrillation ablation.
引用
收藏
页码:94 / 102
页数:9
相关论文
共 48 条
[1]  
Ahrens J., 2005, PARAVIEW END USER TO
[2]   Arrhythmogenic propensity of the fibrotic substrate after atrial fibrillation ablation: a longitudinal study using magnetic resonance imaging-based atrial models [J].
Ali, Rheeda L. ;
Hakim, Joe B. ;
Boyle, Patrick M. ;
Zahid, Sohail ;
Sivasambu, Bhradeev ;
Marine, Joseph E. ;
Calkins, Hugh ;
Trayanova, Natalia A. ;
Spragg, David D. .
CARDIOVASCULAR RESEARCH, 2019, 115 (12) :1757-1765
[3]   A Reproducible Protocol to Assess Arrhythmia Vulnerability in silico: Pacing at the End of the Effective Refractory Period [J].
Azzolin, Luca ;
Schuler, Steffen ;
Doessel, Olaf ;
Loewe, Axel .
FRONTIERS IN PHYSIOLOGY, 2021, 12
[4]   Novel Radiofrequency Ablation Strategies for Terminating Atrial Fibrillation in the Left Atrium: A Simulation Study [J].
Bayer, Jason D. ;
Roney, Caroline H. ;
Pashaei, Ali ;
Jais, Pierre ;
Vigmond, Edward J. .
FRONTIERS IN PHYSIOLOGY, 2016, 7
[5]  
Beach M, 2021, FIMH
[6]   Computationally guided personalized targeted ablation of persistent atrial fibrillation [J].
Boyle, Patrick M. ;
Zghaib, Tarek ;
Zahid, Sohail ;
Ali, Rheeda L. ;
Deng, Dongdong ;
Franceschi, William H. ;
Hakim, Joe B. ;
Murphy, Michael J. ;
Prakosa, Adityo ;
Zimmerman, Stefan L. ;
Ashikaga, Hiroshi ;
Marine, Joseph E. ;
Kolandaivelu, Aravindan ;
Nazarian, Saman ;
Spragg, David D. ;
Calkins, Hugh ;
Trayanova, Natalia A. .
NATURE BIOMEDICAL ENGINEERING, 2019, 3 (11) :870-879
[7]   Left Atrial Volume as a Biomarker of Atrial Fibrillation at Routine Chest CT: Deep Learning Approach [J].
Bratt, Alex ;
Guenther, Zachary ;
Hahn, Lewis D. ;
Kadoch, Michael ;
Adams, Patrick L. ;
Leung, Ann N. C. ;
Guo, Haiwei H. .
RADIOLOGY-CARDIOTHORACIC IMAGING, 2019, 1 (05)
[8]  
Cignoni P., 2008, 6 EUROGRAPHICS ITALI, DOI DOI 10.2312/LOCALCHAPTEREVENTS/ITALCHAP/ITALIANCHAPCONF2008/129-136
[9]   An Efficient Finite Element Approach for Modeling Fibrotic Clefts in the Heart [J].
Costa, Caroline Mendonca ;
Campos, Fernando O. ;
Prassl, Anton J. ;
dos Santos, Rodrigo Weber ;
Sanchez-Quintana, Damian ;
Ahammer, Helmut ;
Hofer, Ernst ;
Plank, Gernot .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (03) :900-910
[10]   Left atrial volume is more important than the type of atrial fibrillation in predicting the long-term success of catheter ablation [J].
Costa, Francisco Moscoso ;
Ferreira, Antonio Miguel ;
Oliveira, Silvia ;
Santos, Pedro Galvao ;
Durazzo, Anai ;
Carmo, Pedro ;
Santos, Katya Reis ;
Cavaco, Diogo ;
Parreira, Leonor ;
Morgado, Francisco ;
Adragao, Pedro .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2015, 184 :56-61