Division Algebras with Left Algebraic Commutators

被引:5
|
作者
Aaghabali, M. [1 ]
Akbari, S. [2 ]
Bien, M. H. [3 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Sharif Univ Technol, Dept Math Sci, POB 11155-9415, Tehran, Iran
[3] Univ Sci, Fac Math & Comp Sci, VNU HCM, 227 Nguyen Van Cu Str,Dist 5, Hcm City, Vietnam
关键词
Division algebra; Commutators; Laurent polynomial identity; Maximal subfield; Left algebraic; RINGS;
D O I
10.1007/s10468-017-9739-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a division algebra with center F and K a (not necessarily central) subfield of D. An element a a D is called left algebraic (resp. right algebraic) over K, if there exists a non-zero left polynomial a (0) + a (1) x + ai + a (n) x (n) (resp. right polynomial a (0) + x a (1) + ai + x (n) a (n) ) over K such that a (0) + a (1) a + ai + a (n) a (n) = 0 (resp. a (0) + a a (1) + ai + a (n) a (n) ). Bell et al. proved that every division algebra whose elements are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. In this paper we generalize this result and prove that every division algebra whose all multiplicative commutators are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite provided that the center of division algebra is infinite. Also, we show that every division algebra whose multiplicative group of commutators is left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. Among other results we present similar result regarding additive commutators under certain conditions.
引用
收藏
页码:807 / 816
页数:10
相关论文
共 50 条
  • [31] Algebraic families of subfields in division rings
    Bois, Jean-Marie
    Vernik, Gil
    JOURNAL OF ALGEBRA, 2011, 339 (01) : 172 - 180
  • [32] Division algebras with the same maximal subfields
    Chernousov, V. I.
    Rapinchuk, A. S.
    Rapinchuk, I. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (01) : 83 - 112
  • [33] Galois subfields of tame division algebras
    Timo Hanke
    Danny Neftin
    Adrian Wadsworth
    Israel Journal of Mathematics, 2016, 211 : 367 - 389
  • [34] DIVISION ALGEBRAS WITH RADICABLE MULTIPLICATIVE GROUPS
    Mahdavi-Hezavehi, M.
    Motiee, M.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4084 - 4096
  • [35] Tensor products of division algebras and fields
    Rowen, Louis
    Saltman, David J.
    JOURNAL OF ALGEBRA, 2013, 394 : 296 - 309
  • [36] Commutators and Cartan Subalgebras in Lie Algebras of Compact Semisimple Lie Groups
    Malkoun, J.
    Nahlus, N.
    JOURNAL OF LIE THEORY, 2017, 27 (04) : 1027 - 1032
  • [37] Primitive algebraic algebras of polynomially bounded growth
    Bell, Jason P.
    Small, Lance W.
    Smoktunowicz, Agata
    NEW TRENDS IN NONCOMMUTATIVE ALGEBRA, 2012, 562 : 41 - +
  • [38] Some algebraic algebras with Engel unit groups
    Bien, M. H.
    Ramezan-Nassab, M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (02)
  • [39] The relation type of affine algebras and algebraic varieties
    Planas-Vilanova, Francesc
    JOURNAL OF ALGEBRA, 2015, 441 : 166 - 179
  • [40] Invariants of algebraic derivations and automorphisms in Banach algebras
    Liau, Pao-Kuei
    Liu, Cheng-Kai
    JOURNAL OF ALGEBRA, 2014, 403 : 313 - 323