Division Algebras with Left Algebraic Commutators

被引:5
|
作者
Aaghabali, M. [1 ]
Akbari, S. [2 ]
Bien, M. H. [3 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Sharif Univ Technol, Dept Math Sci, POB 11155-9415, Tehran, Iran
[3] Univ Sci, Fac Math & Comp Sci, VNU HCM, 227 Nguyen Van Cu Str,Dist 5, Hcm City, Vietnam
关键词
Division algebra; Commutators; Laurent polynomial identity; Maximal subfield; Left algebraic; RINGS;
D O I
10.1007/s10468-017-9739-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a division algebra with center F and K a (not necessarily central) subfield of D. An element a a D is called left algebraic (resp. right algebraic) over K, if there exists a non-zero left polynomial a (0) + a (1) x + ai + a (n) x (n) (resp. right polynomial a (0) + x a (1) + ai + x (n) a (n) ) over K such that a (0) + a (1) a + ai + a (n) a (n) = 0 (resp. a (0) + a a (1) + ai + a (n) a (n) ). Bell et al. proved that every division algebra whose elements are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. In this paper we generalize this result and prove that every division algebra whose all multiplicative commutators are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite provided that the center of division algebra is infinite. Also, we show that every division algebra whose multiplicative group of commutators is left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. Among other results we present similar result regarding additive commutators under certain conditions.
引用
收藏
页码:807 / 816
页数:10
相关论文
共 50 条
  • [1] Division Algebras with Left Algebraic Commutators
    M. Aaghabali
    S. Akbari
    M. H. Bien
    Algebras and Representation Theory, 2018, 21 : 807 - 816
  • [2] Algebraic commutators with respect to subnormal subgroups in division rings
    M. H. Bien
    B. X. Hai
    V. M. Trang
    Acta Mathematica Hungarica, 2021, 163 : 663 - 681
  • [3] ALGEBRAIC COMMUTATORS WITH RESPECT TO SUBNORMAL SUBGROUPS IN DIVISION RINGS
    Bien, M. H.
    Hai, B. X.
    Trang, V. M.
    ACTA MATHEMATICA HUNGARICA, 2021, 163 (02) : 663 - 681
  • [4] Decompositions of matrices over division algebras into products of commutators
    Mai Hoang Bien
    Truong Huu Dung
    Nguyen Thi Thai Ha
    Tran Nam Son
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 646 : 119 - 131
  • [5] A sum-product estimate in algebraic division algebras
    Mei-Chu Chang
    Israel Journal of Mathematics, 2005, 150 : 369 - 380
  • [6] GENERAL POLYNOMIALS OVER DIVISION ALGEBRAS AND LEFT EIGENVALUES
    Chapman, Adam
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 508 - 513
  • [7] Graded algebras associated to algebraic algebras need not be algebraic
    Smoktunowicz, Agata
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 441 - 449
  • [8] A note on commutators in algebras of unbounded operators
    Kadison, Richard, V
    Liu, Zhe
    Thom, Andreas
    EXPOSITIONES MATHEMATICAE, 2020, 38 (02) : 232 - 239
  • [9] Real Division Algebras with a Left Unit Element that Satisfy Certain Identities
    Diabang, Andre Souleye
    Mballo, Ama Sekou
    Diop, Papa Cheikhou
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 2276 - 2287
  • [10] Rings and C*-algebras generated by commutators ☆
    Gardella, Eusebio
    Thiel, Hannes
    JOURNAL OF ALGEBRA, 2025, 662 : 214 - 241